Amortized Analysis of Union-Find

Ruijie Fang

1 Union-Find

The union-find algorithm we 'll be analyzing supports union and find operations, and implements them via union-by-rank as well as path compression. Let n be the total number of singleton sets in the beginning of a sequence σ of m operations. Let $T_t(u)$ denote the set of vertices in the subtree rooted at vertex u at operation $t, 1 \leq t \leq m$. Let h(T(u)) return the height of a subtree rooted at u. We define our rank function at vertex u at step t as

$$r(u) = 2 + h(T_t(u))$$

We call a vertex a root if its parent is itself. Initially, the parent of all vertices point to themselves.

1.1 Union

The union algorithm is straightforward:

If $r(x) \leq r(y)$, Union(x, y) links the root of x to the root of y and returns. Else, r(y) > r(x), and Union(x, y) links the root of y to the root of x and returns.

1.2 Find

Using path compression, we can implement find as

Find(x)

{ $parent(x) \leftarrow Find(parent(x)); return parent(x); }$

The Find(\cdot)-operation can be decomposed into two operations: 1) An operation that takes time proportional to the length of the path from x to a root to return that root; 2) Another operation that takes the same number of steps, which resets the parent pointers of x and its ancestors to the root.

2 Ackermann Function and its Inverse

We define the Ackermann function as:

$$A_0(x) = x + 1$$

 $A_k(x) = A_{k-1}^x(x) = \prod_{i=1}^x A_{k-1}(x)$

and $A(k) = A_k(2)$ for all $k \in \mathbb{N}$. Observe that A_k is monotone, i.e. $A_k(y) \ge A_k(x)$ if $y \ge x$.

The Ackermann function grows faster than all primitive recursive functions. We define $\alpha(n)$, the inverse Ackermann function, as

$$\alpha(n) = \min\{k; A_k(2) \ge n\}$$

For all practical purposes, $\alpha(n) \leq 4$.

3 Three Basic Lemmas

3.1 Lemma I: $|T_t(u)| \ge 2^{h(T_t(u))}$ for all $1 \le t \le m$ and any u.

Proof: By induction on m.

Base case: m = 1, $|T_1(u)| = 1$ for all u and $h(T_1(u)) = 0$.

Inductive case: Assume $|T_{t-1}(u)| \ge 2^{h(T_{t-1}(u))}$. If we do a find operation at step t, then $h(T_t(u)) = 1 \le 2^{h(T_{t-1}(u))} \le |T_{t-1}(u)| = |T_t(u)|$. If we do a union operation with vertex v:

1) if $r(u) \leq r(v)$, then we link subtree at u into subtree at v, and $|T_t(u)| = |T_{t-1}(u)| \geq 2^{h(T_{t-1}(u))} = 2^{h(T_t(u))}$ is invariant.

2) else, we link some smaller tree rooted at v into u, and since

$$|T_{t-1}(u)| \ge |T_{t-1}(v)|$$

so we have two situations, if $h(T_{t-1}(u)) \ge h(T_{t-1}(v)) + 1$ then $h(T_t(u)) =$

 $h(T_{t-1}(u))$, and therefore we have

$$|T_t(u)| = |T_{t-1}(u)| + |T_{t-1}(v)|$$

$$\geq 2^{h(T_{t-1}(u))}$$

$$= 2^{h(T_t(u))}$$

or, $h(T_{t-1}(v)) + 1 > h(T_{t-1}(u))$ then $h(T_t(u)) = h(T_{t-1}(v)) + 1$ (one extra depth due to linking induced by union operation), and

$$|T_t(u)| = |T_{t-1}(u)| + |T_{t-1}(v)|$$

$$\geq 2 \cdot |T_{t-1}(v)|$$

$$= 2 \cdot 2^{h(T_{t-1}(v))}$$

$$= 2^{h(T_{t-1}(v))+1}$$

$$= 2^{h(T_t(u))}$$

QED.

3.2 Lemma II: The maximum rank after executing sequence σ is at most $|\log n| + 2$.

Proof:

Let $r_m(v)$ denote the rank of vertex v at step m. By Lemma I:

$$\begin{split} n &\geq |T_m(v)| \\ &\geq 2^{h(T_m(v))} \\ \lfloor \log n \rfloor &\geq h(T_m(v)) \\ &= r_m(v) - 2 \\ r_m(v) &= \lfloor \log n \rfloor + 2 \end{split}$$

3.3 Lemma III: The number of vertices that have rank $r \le n/2^{r-2}$.

Another way to state this is

$$|\{v; r(v) = r\}| \le n/2^{r-2}.$$

Proof:

Observe that if r(u) = r(v) then $T_m(u)$ and $T_m(v)$ are disjoint, so

$$n \ge |\bigcup_{r(u)=r} T_m(u)|$$

= $\sum_{r(u)=r} |T_m(u)|$
 $\ge \sum_{r(u)=r} 2^{h(T_m(u))}$ by Lemma I
= $\sum_{r(u)=r} 2^{r-2}$
= $2^{r-2} |\{u; r(u) = r\}|$
 $|\{u; r(u) = r\} \le n/2^{r-2}.$

4 Analysis

4.1 A distance metric

Observe that $r(\operatorname{parent}(u)) \ge r(u) + 1$ at all times. Let $\delta(u)$ be the greatest k such that

$$r(\operatorname{parent}(u)) = A_k(r(u))$$

Note that such k always exists, since we can always let k = 0, and in which case $r(\operatorname{parent}(u)) = r(u) + 1$. The larger $\delta(u)$, the larger the difference between the height of subtree at u and the subtree at $\operatorname{parent}(u)$; the large difference indicates the subtree at u must be among the shallowest subtrees of children of $\operatorname{parent}(u)$; if $\delta(u) = 0$, then the subtree at u must be the deepest subtree among the subtrees of children of $\operatorname{parent}(u)$. As we shall see, the setup of our charging scheme will depend on this intuition.

4.2 An upper bound on $\delta(u)$

How big can $\delta(u)$ be? Intuitively, it shouldn't be too large, which would indicate the tree is very deep at parent(u), which is not good. We now show an upper bound for $\delta(u) = k$.

$$n > \lfloor \log n \rfloor + 2$$

$$\geq r(\operatorname{parent}(u)) \text{ by Lemma II}$$

$$\geq A_k(r(u))$$

$$> A_k(2)$$

since $r(u) \ge 2$ by monotonicity of A_k . This implies

$$\alpha(n) > k = \delta(u)$$

4.3 The charging scheme

Union-type operations take constant time in our union find algorithm, so we focus on analyzing a sequence of m find operations (assuming we're operating on a forest of trees with nontrivial structure — i.e. they are not all singleton sets).

1) Find(x) for which there exists y in a path from x to root such that $\delta(y) = \delta(x)$. This models the situation like

$$x \to \dots \to y \to \dots \to \text{root}$$

In this case, we charge 1 time unit to the vertex x itself.

2) If there is no such y on a path from x to root, then we charge the time unit to the entire find operation.

4.4 Analysis of the charging scheme

2) is relatively easy to analyze. Assume that all m find operations cover vertices of type 2. But there are no more than $\alpha(n)$ distinct δ -values on a path from x to root (since no δ value occurs twice), so each charge is also upper bounded by $\alpha(n)$, and the total running time is bounded by $O((m+n)\alpha(n))$.

For 1), the situation requires a bit more work: Let x be the vertex which we initiate the find-operation. We know that

$$r(\operatorname{parent}(y)) \ge A_k(r(y))$$

 $r(\operatorname{parent}(x)) \ge A_k(r(x))$

Suppose, in fact that $r(\operatorname{parent}(x)) \ge A_k^i(r(x))$ for any $i \ge 1$.

for $k = \delta(x) = \delta(y)$. Let v be the root node (i.e. the last node on the path). Since the tree at v is larger than its subtrees,

$$r(v) \ge r(\operatorname{parent}(x))$$

$$\ge A_k(r(y))$$

$$\ge A_k(r(\operatorname{parent}(x)) \text{ by monotonicity},$$

$$\ge A_k(A_k^i(r(x)))$$

$$= A_k^{i+1}(r(x))$$

At most r(x) charges are charged to x before $r(\operatorname{parent}(x)) \ge A_k^{r(x)}(r(x)) = A_{k+1}(r(x))$, which causes $\delta(x) \ge k+1$.

 $\therefore \delta(x)$ increases by 1 after at most r(x). Since $\delta(x)$ increases at most $\alpha(n) - 1$ times, there can be at most $r(x)\alpha(n)$ charges to every such vertex x of rank r. In total, this amounts to

$$r \cdot \alpha(n) \frac{n}{2^{r-2}}$$

chargest against vertices of rank r, and

$$\sum_{r=0}^{\infty} \alpha(n) \frac{nr}{2^{r-2}} = n\alpha(n) \sum_{r=0}^{\infty} \frac{r}{2^{r-2}}$$
$$= n\alpha(n) \cdot 8$$
$$= O(n\alpha(n))$$

total chargest against all such vertices. Taking the worst case of the two situations above, we arrive at the following theorem:

4.5 Theroem I: A sequence of m union and find operations starting from n singleton sets take $O((m + n)\alpha(n))$ worst-case time.