
Amortized Analysis of Union-Find

Ruijie Fang

1 Union-Find

The union-�nd algorithm we 'll be analyzing supports union and �nd opera-
tions, and implements them via union-by-rank as well as path compression.
Let n be the total number of singleton sets in the beginning of a sequence σ
of m operations. Let Tt(u) denote the set of vertices in the subtree rooted
at vertex u at operation t, 1 ≤ t ≤ m. Let h(T (u)) return the height of a
subtree rooted at u. We de�ne our rank function at vertex u at step t as

r(u) = 2 + h(Tt(u))

We call a vertex a root if its parent is itself. Initially, the parent of all
vertices point to themselves.

1.1 Union

The union algorithm is straightforward:
If r(x) ≤ r(y), Union(x, y) links the root of x to the root of y and returns.
Else, r(y) > r(x), and Union(x, y) links the root of y to the root of x and

returns.

1.2 Find

Using path compression, we can implement �nd as
Find(x)
{ parent(x)←Find(parent(x)); return parent(x); }
The Find(·)-operation can be decomposed into two operations: 1) An

operation that takes time proportional to the length of the path from x to a
root to return that root; 2) Another operation that takes the same number
of steps, which resets the parent pointers of x and its ancestors to the root.

1

2 Ackermann Function and its Inverse

We de�ne the Ackermann function as:

A0(x) = x+ 1

Ak(x) = Ax
k−1(x) =

x∏
i=1

Ak−1(x)

and A(k) = Ak(2) for all k ∈ N. Observe that Ak is monotone, i.e.
Ak(y) ≥ Ak(x) if y ≥ x.

The Ackermann function grows faster than all primitive recursive func-
tions. We de�ne α(n), the inverse Ackermann function, as

α(n) = min{k;Ak(2) ≥ n}

For all practical purposes, α(n) ≤ 4.

3 Three Basic Lemmas

3.1 Lemma I: |Tt(u)| ≥ 2h(Tt(u)) for all 1 ≤ t ≤ m and any

u.

Proof: By induction on m.
Base case: m = 1, |T1(u)| = 1 for all u and h(T1(u)) = 0.
Inductive case: Assume |Tt−1(u)| ≥ 2h(Tt−1(u)). If we do a �nd operation

at step t, then h(Tt(u)) = 1 ≤ 2h(Tt−1(u)) ≤ |Tt−1(u)| = |Tt(u)|. If we do a
union operation with vertex v:

1) if r(u) ≤ r(v), then we link subtree at u into subtree at v, and |Tt(u)| =
|Tt−1(u)| ≥ 2h(Tt−1(u)) = 2h(Tt(u)) is invariant.

2) else, we link some smaller tree rooted at v into u, and since

|Tt−1(u)| ≥ |Tt−1(v)|

so we have two situations, if h(Tt−1(u)) ≥ h(Tt−1(v)) + 1 then h(Tt(u)) =

2

h(Tt−1(u)), and therefore we have

|Tt(u)| = |Tt−1(u)|+ |Tt−1(v)|
≥ 2h(Tt−1(u))

= 2h(Tt(u))

or, h(Tt−1(v))+1 > h(Tt−1(u)) then h(Tt(u)) = h(Tt−1(v))+1 (one extra
depth due to linking induced by union operation), and

|Tt(u)| = |Tt−1(u)|+ |Tt−1(v)|
≥ 2 · |Tt−1(v)|
= 2 · 2h(Tt−1(v))

= 2h(Tt−1(v))+1

= 2h(Tt(u))

QED.

3.2 Lemma II: The maximum rank after executing se-

quence σ is at most blog nc+ 2.

Proof:
Let rm(v) denote the rank of vertex v at step m.
By Lemma I:

n ≥ |Tm(v)|
≥ 2h(Tm(v))

blog nc ≥ h(Tm(v))

= rm(v)− 2

rm(v) = blog nc+ 2

3.3 Lemma III: The number of vertices that have rank

r ≤ n/2r−2.

Another way to state this is

|{v; r(v) = r}| ≤ n/2r−2.

3

Proof:
Observe that if r(u) = r(v) then Tm(u) and Tm(v) are disjoint, so

n ≥ |
⋃

r(u)=r

Tm(u)|

=
∑

r(u)=r

|Tm(u)|

≥
∑

r(u)=r

2h(Tm(u)) by Lemma I

=
∑

r(u)=r

2r−2

= 2r−2|{u; r(u) = r}|
|{u; r(u) = r} ≤ n/2r−2.

4 Analysis

4.1 A distance metric

Observe that r(parent(u)) ≥ r(u) + 1 at all times. Let δ(u) be the greatest
k such that

r(parent(u)) = Ak(r(u))

Note that such k always exists, since we can always let k = 0, and in
which case r(parent(u)) = r(u)+1. The larger δ(u), the larger the di�erence
between the height of subtree at u and the subtree at parent(u); the large
di�erence indicates the subtree at umust be among the shallowest subtrees of
children of parent(u); if δ(u) = 0, then the subtree at u must be the deepest
subtree among the subtrees of children of parent(u). As we shall see, the
setup of our charging scheme will depend on this intuition.

4.2 An upper bound on δ(u)

How big can δ(u) be? Intuitively, it shouldn't be too large, which would
indicate the tree is very deep at parent(u), which is not good. We now show
an upper bound for δ(u) = k.

4

n > blog nc+ 2

≥ r(parent(u)) by Lemma II

≥ Ak(r(u))

≥ Ak(2)

since r(u) ≥ 2 by monotonicity of Ak. This implies

α(n) > k = δ(u)

4.3 The charging scheme

Union-type operations take constant time in our union �nd algorithm, so we
focus on analyzing a sequence ofm �nd operations (assuming we're operating
on a forest of trees with nontrivial structure � i.e. they are not all singleton
sets).

1) Find(x) for which there exists y in a path from x to root such that
δ(y) = δ(x). This models the situation like

x→ ...→ y → ...→ root

In this case, we charge 1 time unit to the vertex x itself.
2) If there is no such y on a path from x to root, then we charge the time

unit to the entire �nd operation.

4.4 Analysis of the charging scheme

2) is relatively easy to analyze. Assume that all m �nd operations cover
vertices of type 2. But there are no more than α(n) distinct δ-values on a path
from x to root (since no δ value occurs twice), so each charge is also upper
bounded by α(n), and the total running time is bounded by O((m+n)α(n)).

For 1), the situation requires a bit more work: Let x be the vertex which
we initiate the �nd-operation. We know that

r(parent(y)) ≥ Ak(r(y))

r(parent(x)) ≥ Ak(r(x))

Suppose, in fact that r(parent(x)) ≥ Ai
k(r(x)) for any i ≥ 1.

5

for k = δ(x) = δ(y). Let v be the root node (i.e. the last node on the
path). Since the tree at vis larger than its subtrees,

r(v) ≥ r(parent(x))

≥ Ak(r(y))

≥ Ak(r(parent(x)) by monotonicity,

≥ Ak(A
i
k(r(x))

= Ai+1
k (r(x))

At most r(x) charges are charged to x before r(parent(x)) ≥ A
r(x)
k (r(x)) =

Ak+1(r(x)), which causes δ(x) ≥ k + 1.
∴ δ(x) increases by 1 after at most r(x). Since δ(x) increases at most

α(n)− 1 times, there can be at most r(x)α(n) charges to every such vertex
x of rank r. In total, this amounts to

r · α(n) n

2r−2

chargest against vertices of rank r, and

∞∑
r=0

α(n)
nr

2r−2
= nα(n)

∞∑
r=0

r

2r−2

= nα(n) · 8
= O(nα(n))

total chargest against all such vertices. Taking the worst case of the two
situations above, we arrive at the following theorem:

4.5 Theroem I: A sequence of m union and �nd oper-

ations starting from n singleton sets take O((m +
n)α(n)) worst-case time.

6

