
Finding t-dominators in Linear Time

Ruijie Fang

Preliminaries. Let G = (V,E) be a directed graph of n vertices and m edges. A t-
dominator vertex is a vertex v such that v is on every s− t path in G; in other words, every
path from s to t must pass through v. We describe an algorithm based on incremental search
for finding the set of all t-dominators in G in O(m+ n)-time.

The algorithm. For each vertex v ∈ V , we maintain an extra bit u(v) that tells us if
the vertex is usable; a directed edge (u, v) is usable if and only if u is usable; if an edge
(u, v) is unusable, then we treat it as deleted. Initially, mark all vertices as usable. Let
s = u1u2...uk = t be an arbitrary st-path. Let the vertices ui be denoted as a path vertex.
Let the edges on this st-path be denoted as a path edge. We can find this path using BFS or
DFS in O(m + n)-time. During the search, we maintain a global variable hi which records
the largest i for which a path vertex ui is visited. Initially, set hi = 1 and mark s as the first
(trivial) t-dominator. Afterwards, mark all the vertices uiui+1, 1 ≤ i < k as unusable. Next,
start searching from s, ignoring all unusable edges and only visiting the usable edges. After
the search terminates, mark the vertex u2 as usable; and examine hi; if hi = 2, then 2 is a
t-dominator, otherwise, 2 can be ruled out as a t-dominator.

We can iteratively repeat the search process incrementally at every path vertex ui; we
augment the search by going through the newly available vertex ui−1ui for i > 1, and visit
every usable outgoing edge of ui, if unexplored. Before visiting each path vertex ui+1 after
the search terminates, we examine hi; if ui+1 = hi at any stage of the algorithm, then ui+1

will be marked as a t-dominator, otherwise it is ruled out.
Each vertex is examined at most once by the aforementioned procedure, hence the algo-

rithm works in O(m + n)-time. The incremental search may be implemented using either
breath-first or depth-first search; we simply maintain an array visited[·] that is marked as
true whenever we visited a vertex, so as to not use it again in the future.

Proof of correctness. Via induction on each iteration of the algorithm. For the base
case, hi = 1 and s = u1 is a trivial t-dominator.

Next, assume we have found the t-dominators among the path vertices u1...ui. After
marking the vertex ui+1 as usable, there are two possibilities to consider for ui+1:

1. hi 6= i + 1; in this case, we can reach some ul further down the path with l > i from
some previous path vertex uj with j < i, without using uiui+1 as an edge. This implies
that u1u2...uj →∗ ulul+1...uk is a valid st-path; this path does not include ui as a vertex,
hence ui is not a t-dominator.

1



2. hi = i + 1; in this case, the deepest path vertex reachable from s without using any
path edges after ui−1 is exactly ui. Assume, for sake of contradiction, that ui is not a
t-dominator. Then by definition there exists a ui-free st-path u1...uj →∗ ul...uk, with
j < i < l; such a path coincides with the initial st-path on the first j and the last k− l
vertice. However, this necessarily means the vertex ul is reachable from uj without
using uiui+1 as an edge, implying that hi = l 6= i+ 1; contradiction.

Application to SAT solving. A practical backtracking algorithm for solving SAT that
is quite popular nowadays is the CDCL (Conflict-Driven Clause Learning) Solver. The core
idea of the CDCL algorithm is to iteratively maintain, at each recursion level, an implication
graph. An implication graph is a directed graph where vertices are literal assignments and
the directed edges denote implications between literal assignments. The idea is, of course,
that whenever we assign a value to some literals in a certain clause, it might implicate others
during boolean constraint propagation (BCP). Then we can record such implications in the
graph.

If BCP returns a conflict, then we return from graph-building and analyze the implication
graph. The graph will be directed, with multiple sources (the vertices we pick arbitrarily
at the start of each iteration without implications) and a single sink (the conflict node).
Here comes the next great idea in CDCL: doing non-chronological backtracking ; we don’t
just backtrack to the second-deepest BFS level of the implication graph. Instead, we seek to
remove an entire part of the subgraph enclosing the sink node, defined by a cut. Now how
do we find such a cut? Our cut has to have certain nice properties, such as being minimal.
What we need is a unique implication point (UIP), which is essentially a t-dominator that
is closest to sink (but not the sink) on the implication graph. We can now use the above
algorithm to compute the UIP in linear time.

One might argue that using a nice linear-time algorithm as a subroutine to speed-up an
exponential-time backtracking algorithm is purposeless. It might not be as purposeless as it
seems; for instance, it is conventional knowledge that much of the time during SAT solving
is spent on doing BCP, so even practical improvements to BCP performance that does not
change the theoretical worst-case bounds could lead to a good, practical speed-up.

Acknowledgements. This was originally presented as an initial problem in Tarjan’s graph
algorithms seminar at Princeton University. Two solutions were thought up, both running
in linear time: this one, and one based on a shortest-path characterization, the idea due to
Antonio Molina Lovett and refined by Tarjan. I had discussions with Kexin Jin and Henry
Tang on this problem.

2


