
Notes on Computer Multiplication

Rui-Jie Fang

We detail computer algorithms that perform x · y with x, y being two n-bit
vectors along with polynomial multiplication.

1 Schoolbook Multiplication

Let x =
∑n−1

k=0 ak2
k y =

∑n−1
k=0 bk2

k where ak, bk ∈ {0, 1}. Schoolbook mul-
tiplication starts by computing all partial sums of the form xbk and yak and
adding them together. Each 1-bit multiplication for the partial sum can be im-
plemented as a single AND-operation. The time complexity is hence O(n2)+cn
because of the n2 partial summing operations and the remaining step that adds
all partial sums together.

2 Karatsuba Multiplication

Is there an algorithm that can perform multiplication faster than n2? Kol-
mogorov thought no; however, Kolmogorov's student Karatsuba went on a quest
for a faster algorithm anyway. We start by designing a divide-and-conquer
scheme recursion for multiplication. If we express x, y in terms of two n/2-bit
vectors, one containing the low-bits, and another containing the high-bits, we
have:

x = x12
n/2 + x0

y = y12
n/2 + y0

Now the recurrence can be just based upon the expansion of x · y:

xy = (x12
n/2 + x0)(y12

n/2 + y0)

= x1y12
n + x1y02

n/2 + x0y12
n/2 + x0y0

= x1y12
n + (x1y0 + x0y1)2

n/2 + x0y0

At each level we have four
The runtime recurrence is now expressed as:

1

T (n) = 4T (n/2) + cn

(The extra linear factor comes from the cost of addition) Which isO(nlog2 4) =
O(n2). This is not good enough; can we make the recursion tree less bushy?

Observe:

(x0 + x1)(y0 + y1) = x0y0 + x0y1 + x1y0 + x1y1

x0y1 + x1y0 = (x0 + x1)(y0 + y1)− x0y0 − x1y1
Let A = x1y1, B = x0y0, C = (x0 + x1)(y0 + y1). Now we can rewrite our

recurrence as

xy = x1y12
n + (x1y0 + x0y1)2

n/2 + x0y0

= x1y12
n + ((x0 + x1)(y0 + y1)− x1y1 − x0y0) 2n/2 + x0y0

= A2n + (C −A−B)2n/2 + x0y0

Note how there is now only three recursive calls which are A, B, C; we have
successfully traded a single recursive call for two additions and two subtractions.

The runtime for the new �less bushy� algorithm is now:

T (n) = 3T (n/2) + cn

Which becomes: O(nlog2 3) = O(n1.59). The algorithm's pseudo code is
presented below:

Algorithm 1 (Karatsuba Multiplication).

Karatsuba(x, y, n):

if (n = 1): return x ∧ y;
else:

Write x = x12
n/2 + x0, y = y12

n/2 + y0;
d0 := x0 + x1; d1 := y0 + y1;
A := Karatsuba(x1, y1, n/2);
B := Karatsuba(x0, y0, n/2);
C :=
Karatsuba(d0, d1,max{sizeof(d0), sizeof(d1)}); (: at most n/2+
1 bits :)

return A2n + (C −A−B)2n/2 +B;

Remark: The multiplications by 2n and 2n/2 should be implemented as bitmask
operations.

2

2.1 Subtractive Karatsuba

The main dilemma presented by algorithm 1 is the possibility that d0 or d1 may
be of n/2 + 1 bit size due to carries. We may solve the dilemma by using a
subtractive algorithm. The subtractive algorithm works by computing C in a
di�erent way:

(|x1−x0|)(|y1−y0|) =


x1y1 + x0y0 − (x1y0 + x0y1) x1 − x0 ≥ 0, y1 − y0 ≥ 0 (1)

x1y0 + x0y1 − (x1y1 + x0y0) x1 − x0 ≥ 0, y1 − y0 < 0 (2)

x0y1 + x1y0 − (x0y0 + x1y1) x1 − x0 < 0, y1 − y0 ≥ 0 (3)

x0y0 + x1y1 − (x0y1 + x1y0) x1 − x0 < 0, y1 − y0 < 0 (4)

It is not hard to see that cases (1), (4) are equal and (2), (3) are equal.
Simplifying, we �nd that for cases (1), (4), we have:

x1y0 + x0y1 = −(|x1 − x0| · |y1 − y0|) + x1y1 + x0y0

For cases (2), (3), we have:

x1y0 + x0y1 = (|x1 − x0| · |y1 − y0|) + x1y1 + x0y0

Thus if we take the sign for x1−x0, y1−y0 and the sign is stored as a single
bit, we simply make the result of C = |x1 − x0| · |y1 − y0| multiply the product
of the two sign bits (Similar to XOR) and subtract the resulting vector from
A+B (We want A+B−|C| when C is positive (cases (1), (4)), and A+B+ |C|
when C is negative (cases (2), (3))).

We therefore have:

Algorithm 2 (Subtractive Karatsuba Multiplication).

SubtractiveKaratsuba(x, y, n):

if (n = 1): return x ∧ y;
else:

Write x = x12
n/2 + x0, y = y12

n/2 + y0;
k0 := |x1 − x0|; k1 := |y1 − y0|;
s0 := sign(x1 − x0); s1 = sign(y1 − y0);
A := SubtractiveKaratsuba(x1, y1, n/2);
B := SubtractiveKaratsuba(x0, y0, n/2);
C := SubtractiveKaratsuba(k0, k1, n/2);
return A · 2n +B + (A+B − s0s1C)2n/2;

We have now coined most of the details for Karatsuba multiplication, except
how we express x, y as x0, y0, x1, y1 is still vague. For word-sized integers, we
can simply express the computation of low-half-word and high-half-word as a
�xed-sized bitmask; the example below is for 32bit integers.

x0 := x&0x0000ffff; x1 := x&0xffff0000;

3

y0 : y&0x0000ffff; y1 := y&0xffff0000;

But for multiprecision arithmetic, we may use regular division and remainder
operations (division serves as a high-bit mask; remainder serves as a low-bit
mask):

x0 := div(x, βn/2); x1 := x mod βn/2;

y0 := div(x, βn/2); y1 := y mod βn/2;

Where β is the base we express our number in. Why? Because division is
like right-shifts that take out all �slots� on the right-half of the vector (corre-
sponding to the high-bit mask); If all the slots being taken out have 0's, then
we have no remainder; all remainder are the least-signi�cant bits lying on the
right of the n/2-th (middle) slot, which is preserved by the remainder operation
(corresponding to the low-bit mask). For more e�cient implementation we may
implement the div operation as n/2 right shifts (i.e. removing the rightmost
n/2 words) and mod operation as copying out the n/2 least signi�cant words
(i.e. copying out the right half of the vector and discarding the left half).

3 Karatsuba with Unequal Sizes

We considered Karatsuba multiplication with two n-bit vectors in section 2.
Now we would like to consider the multiplication of an m-bit vector with an
n-bit vector with n ≤ m. There are two ideas: 1) We can split the two vectors
into an equal amount of smaller chunks (but of di�erent sizes); 2) We can split
the two vectors into an unequal amount of smaller chunks.

TODO: Discuss OddEvenKaratsuba

Algorithm 3 (OddEvenKaratsuba for Unbalanced Multiplication).

OddEvenKaratsuba(X, Y , m, n):
Input: X of size m, Y of size n, m ≥ n ≥ 1;
Output: X · Y ;

if (n = 1): return VectorScalarProduct(X,Y,m);
else:

k0 := floor(m/2); k1 := �oor(n/2);
write x = x0+

4

4 Speed Up Karatsuba by Accumulation andMu-

tual Recursion

5 Karatsuba with Improved Space E�ciency

6 Karatsuba with Less Operations

7 Toom-Cook Multiplication

If we look at Karatsuba multiplication, the part that's variable in multiprecision
arithmetic is its base. We chose base 2 and represented the number as a high-2k-
bit vector and a low-2k-bit vector. Toom-Cook, an algorithm invented by Andrei
Toom and improved by Stephen Cook, is an algorithm that implicitly also suits
polynomial multiplication that generalizes Karatsuba to a base k. Therefore, we
say that Karatsuba really is Toom-Cook when k = 2. The standard Toom-Cook
algorithm is TookCook3, when we split up the numbers x, y by 3.

5

