Notes on Computer Multiplication

Rui-Jie Fang

We detail computer algorithms that perform x - y with x, y being two n-bit
vectors along with polynomial multiplication.

1 Schoolbook Multiplication

Let # = Y.p—0ar2" y = Y2020 bp2F where ay, by € {0,1}. Schoolbook mul-
tiplication starts by computing all partial sums of the form xb; and ya; and
adding them together. Each 1-bit multiplication for the partial sum can be im-
plemented as a single AND-operation. The time complexity is hence O(n?)+cn
because of the n? partial summing operations and the remaining step that adds
all partial sums together.

2 Karatsuba Multiplication

Is there an algorithm that can perform multiplication faster than n?? Kol-
mogorov thought no; however, Kolmogorov’s student Karatsuba went on a quest
for a faster algorithm anyway. We start by designing a divide-and-conquer
scheme recursion for multiplication. If we express x,y in terms of two n/2-bit
vectors, one containing the low-bits, and another containing the high-bits, we
have:

r=12,2"% + 20

y=u2"%+yo

Now the recurrence can be just based upon the expansion of x - y:

zy = (212"% 4 20) (1122 + o)
= 331912” + x1y02"/2 + xoy12"/2 + ZoYo
=z1y12" + (z1y0 + x0y1)2"/2 + ZoYo

At each level we have four
The runtime recurrence is now expressed as:

T(n)=4T(n/2) +cn

(The extra linear factor comes from the cost of addition) Which is O(n!°824) =
O(n?). This is not good enough; can we make the recursion tree less bushy?
Observe:

(o + x1)(yo + y1) = ZoYo + Toy1 + T1Yo + T1y1

Toy1 + 1Yo = (o + 1) (Yo + Y1) — Toyo — T1Y1

Let A = z1y1, B = xoyo, C = (zo + x1)(yo + y1). Now we can rewrite our
recurrence as

zy = 21912" + (2130 + 20y1)2" % + ToY0
= 21912" + (w0 + 21) (Yo + ¥1) — 2191 — Toyo) 2"/ + oyo
= A2" 4+ (C — A — B)2"? + 200
Note how there is now only three recursive calls which are A, B, C; we have

successfully traded a single recursive call for two additions and two subtractions.
The runtime for the new “less bushy” algorithm is now:

T(n) =3T(n/2)+cn

Which becomes: O(n!'°¢23) = O(n'%9). The algorithm’s pseudo code is
presented below:

Algorithm 1 (Karatsuba Multiplication).

Karatsuba(z, y, n):

if (n = 1): return z Ay;
else:
Write x = m12"/2 +x0, Y= y12”/2 + Yo
do = xo + 213 d1 = Yo + Y13
A = Karatsuba(z1, y1,n/2);
B := Karatsuba(zg, yo,n/2);

C =
Karatsuba(dy, di, max{sizeof(dp),sizeof (d1)}); (: at most n/2+
1 bits :)

return A2" + (C — A — B)2”/2 + B;

Remark: The multiplications by 2" and 2"/2 should be implemented as bitmask
operations.

2.1 Swubtractive Karatsuba

The main dilemma presented by algorithm 1 is the possibility that dy or d; may
be of n/2 + 1 bit size due to carries. We may solve the dilemma by using a
subtractive algorithm. The subtractive algorithm works by computing C in a
different way:

T1y1 + Toyo — (T1yo + Toy1) @1 — 20 = 0,y1 —yo > 0(1)

) myo +xoyr — (1y1 + Toyo) 1 — w0 > 0,31 —yo < 0(2)
(|z1—=20|)(ly1—y0l) =

zoy1 + T1yo — (ToyYo + x1y1) 1 — o < 0,91 —yo > 0(3)

Toyo + r1y1 — (Toy1 +2190) 1 — 20 < 0,91 —yo < 0(4)

It is not hard to see that cases (1), (4) are equal and (2), (3) are equal.
Simplifying, we find that for cases (1), (4), we have:

z1Y0 + oY1 = — (|71 — @0l - [y1 — yol) + T1y1 + Toyo

For cases (2), (3), we have:

r1y0 + zoy1 = (|21 — ol - [y1 — vol) + T1y1 + Toyo

Thus if we take the sign for 1 — zg, y1 — yo and the sign is stored as a single
bit, we simply make the result of C = |x; — x| - |y1 — yo| multiply the product
of the two sign bits (Similar to XOR) and subtract the resulting vector from
A+ B (We want A+ B —|C| when C is positive (cases (1), (4)), and A+ B+ |C]|
when C' is negative (cases (2), (3))).

We therefore have:

Algorithm 2 (Subtractive Karatsuba Multiplication).

SubtractiveKaratsuba(x, y, n):

if (n = 1): return z Ay;

else:
Write = = z12"% + 10, y=112"% +yo;
ko = [z1 — wol; k1 = [y1 — yol;
S0 == sign(x; — x0); s1 = sign(y1 — yo);
A := SubtractiveKaratsuba(xy,yi,n/2);
B := SubtractiveKaratsuba(zg, yo,n/2);
C := SubtractiveKaratsuba(ko, k1,n/2);
return A-2" + B + (A + B — s95,0)2"/?;

We have now coined most of the details for Karatsuba multiplication, except
how we express x, y as xg, Yo, 1,1 is still vague. For word-sized integers, we
can simply express the computation of low-half-word and high-half-word as a
fixed-sized bitmask; the example below is for 32bit integers.

Xo ‘= x&0x0000ffff; x4 = x&0xf£££0000;

Vo: y&0x0000f£fff;ys = y&Oxf£££0000;

But for multiprecision arithmetic, we may use regular division and remainder
operations (division serves as a high-bit mask; remainder serves as a low-bit
mask):

zo = div(z, 7?); z; ==z mod g

yo = div(z, 5"%); y1 ==y mod g/

Where [is the base we express our number in. Why? Because division is
like right-shifts that take out all “slots” on the right-half of the vector (corre-
sponding to the high-bit mask); If all the slots being taken out have 0’s, then
we have no remainder; all remainder are the least-significant bits lying on the
right of the n/2-th (middle) slot, which is preserved by the remainder operation
(corresponding to the low-bit mask). For more efficient implementation we may
implement the div operation as n/2 right shifts (i.e. removing the rightmost
n/2 words) and mod operation as copying out the n/2 least significant words
(i.e. copying out the right half of the vector and discarding the left half).

3 Karatsuba with Unequal Sizes

We considered Karatsuba multiplication with two n-bit vectors in section 2.
Now we would like to consider the multiplication of an m-bit vector with an
n-bit vector with n < m. There are two ideas: 1) We can split the two vectors
into an equal amount of smaller chunks (but of different sizes); 2) We can split
the two vectors into an unequal amount of smaller chunks.

TODO: Discuss OddEvenKaratsuba

Algorithm 3 (OddEvenKaratsuba for Unbalanced Multiplication).

0ddEvenKaratsuba(X, Y, m, n):
Input: X of size m, Y of size n, m>n>1;
Output: X -Y;
if (n=1): return VectorScalarProduct(X,Y,m);
else:
ko := floor(m/2); ki = floor(n/2);
write x = xg+

6
7

Speed Up Karatsuba by Accumulation and Mu-
tual Recursion

Karatsuba with Improved Space Efficiency
Karatsuba with Less Operations

Toom-Cook Multiplication

If we look at Karatsuba multiplication, the part that’s variable in multiprecision
arithmetic is its base. We chose base 2 and represented the number as a high-2*-
bit vector and a low-2*-bit vector. Toom-Cook, an algorithm invented by Andrei
Toom and improved by Stephen Cook, is an algorithm that implicitly also suits
polynomial multiplication that generalizes Karatsuba to a base k. Therefore, we
say that Karatsuba really is Toom-Cook when k = 2. The standard Toom-Cook
algorithm is TookCook3, when we split up the numbers x, y by 3.

