
[WORKING TUTORIAL] Computing integer log2(n)

Rui-Jie Fang

Synopsis We discuss several different ways to efficiently compute the integer-log2 (or, the most significant
bit) of an integer. We start from a few obvious ways into ways that are harder to think of but are more
efficient.

Note Citations come as footnotes to links. Sections 3+ describe the work of others and others only. The
author is too lazy to configure bibtex :(

Note We assume that the reader is familiar with conversion between binary and hexadecimals. A review
of hexadecimal-binary conversion can be found at the footnote1.

Caution: Draft - Sections Are Subject To Change And Prone To Errors

1 Standard way

Integer-log2(n) is equivalent to the 0-indexed position of the MSB of n(assuming always round down).
Hence the question is equivalent to asking the position of msb(n). It’s helpful to think about why it is the
case.�
�

�
The ith bit corresponds to 2i in decimal. Integer log2(n) (rounding down) has to be an i such that 2i ≤

n ≤ 2i+1.
That trivially leads to the following algorithm running in O(log n) time with the number of branches

being O(log n):

function ilog2(unsigned int n) {

unsigned int count;

while (n>>=1) {

++count;

}

return count;

}

This is apparently not creative enough.

1https://nx.magikpns.net/resources/hexbin.html.
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2 Binary search

We can first think of using binary search to cut the number of iterations to O(log log n) (However, this does
not deal with the overwhelming amount of branches):

#include <stdio.h>

#include <math.h>

unsigned int table[32] =

{ 0x1, 0x2, 0x4, 0x8, 0x10,

0x20, 0x40, 0x80, 0x100, 0x200,

0x400, 0x800, 0x1000, 0x2000, 0x4000,

0x8000, 0x10000, 0x20000, 0x40000, 0x80000,

0x100000, 0x200000, 0x400000, 0x800000, 0x1000000,

0x2000000, 0x4000000, 0x8000000, 0x10000000, 0x20000000,

0x40000000, 0x80000000 }; /* 1<<i, 0<=i<size */

const unsigned int size = 32; /* size of table */

#define mid(x,y)((x)+((y)-(x))/2)

static inline unsigned int diff(unsigned int L, unsigned int R)

{ /* can be branchless */

return (unsigned int)abs((int)((int)R-(int)L));

}

unsigned int ilog2(int s)

{

if (s < 0) return 0;

unsigned int x = (int) s;

if(x==0||x==1)return 0;

unsigned int L = 0, R = size, M = mid(L,R), invs = 0;

while (diff(L,R) > 1) {

if (x > table[M]) {

L = M;

M = mid(L,R);

continue;

} else if (x < table[M]) {

R = M;

M = mid(L,R);

continue;

} else {

return M;

}

}

return x>table[L] && x<table[R] ? L : R;
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}

(We don’t have to use a table but we use one here for convenience)
The only culprit for this is the number of branches, which is 5 for each iteration, plus 1 for the return

statement, which makes the entire cost become

O(T(n)) = O(Cinstruction · log2 n + Cbranch · (3 log2 n + 1))

We can further cut down the branching amount by 1 or 2 per iteration by eliminating the branching at
absolute value computation, but that is still a lot.

3 Idea similar to glibc’s vectorized strlen, but in a byte per cycle2

glibc’s strlen() function processes length of strings in chunks of words by casting the entire string to a
size_t. We may do something similar by casting to a char and process in chunks of 8 bits (for us it’s a bit
simpler, as our in-loop check is just for checking if there’s 1s in the current byte). Code below:

unsigned int ilog2_v(int s) /* vectorized ilog2 */

{

if (s < 0) return 0;

unsigned int x = (unsigned int) s, count = 0, r = 0;

if (x == 0 || x == 1) return 0;

char *p = &(x); /* vectorize */

while (r < 4 && p[r]) count += 4, ++r;

if (x >> count) return count;

if (x >> (count-1)) return count-1;

if (x >> (count-2)) return count-2;

if (x >> (count-3)) return count-3;

if (x >> (count-4)) return count-4;

}

This gives us time n/4, but still with a crazy amount of branches. This is similar to carry-lookahead adders.
For 64bit integers, we can add another level going in 16bits at a time (using shorts) which then uses our
byte-level ilog2 to reach the solution (analogous to a two-layer carry-lookahead adder scheme). Of course,
we can also add a level of int32 for the ultimate tradeoff on 64bit integers, which first cuts us down by
half of the input (but again, the number of functions would grow exponentially for bigints if we always
want to cut down by a half). Most conventional bithack algorithms work as a combination of word-level
parallelism and unrolled binary search, which are the ideas that this section and section 2 stemmed from.

4 gcc ’s built-in function

This is probably the fastest one (and the easiest one)... For users of gcc, the following function

2For the glibc implementation, see https://stackoverflow.com/questions/20021066/how-the-glibc-strlen-implementation-works
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int __builtin_clz (unsigned int x)

Returns the leading zeroes of an (unsigned) integer. Given the known size of integer, it gets us the msb. We
also note obligatorily that gcc has a few other relevant builtin functions:

int __builtin_ctz (unsigned int x) // computes trailing zeroes

int __builtin_popcount (unsigned int x) // determines number of ones

5 Inventions by other people

There are in general two ways to get ilog2. One way is to “bite the bullet” and compute msb(n), the other
way being computing the number of leading zeroes, which when given with the size of the integer, gives
us ilog2(n).

5.1 Computing ilog2 through msb

5.1.1 The SWAR algorithm

The bit twiddling ilog2 from Henry Gordon Diet’s aggregate.org link3 suggests the use of SWAR algo-
rithms4, packing everything into a bit vector; it also provides a way to get the ceiling of base 2 log. The
floored version is as follows:

unsigned int floor_log2(register unsigned int x) {

x |= (x >> 1);

x |= (x >> 2);

x |= (x >> 4);

x |= (x >> 8);

x |= (x >> 16);

#ifdef LOG0UNDEFINED

return(ones32(x) - 1);

#else

return(ones32(x >> 1));

#endif

}

The first few bitwise-OR operations are actually a divide-and-conquer scheme, which is a lot of fun to
learn5. The first OR fills neighboring holes (i.e. if the nth position is turned on, also turn on the n − 1th
position). The second OR fills two adjacent 2-bit positions The third OR fills two adjacent 4-bit positions
and so on. To see this, the best way is to do this procedure by hand (or in a good REPL) on a number like
0x8888:

3http://aggregate.org/MAGIC/#Log2\%20of\%20an\%20Integer.
4SIMD within a register, https://en.wikipedia.org/wiki/SWAR.
5Actually, their website contains more of this stuff. Highly recommended.
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x = 0x8888; // bit pattern: 0b1000100010001000

x |= x >> 1; // bit pattern: 0b1100110011001100

x |= x >> 2; // bit pattern: 0b1111111111111111

Or to better illustrate, we may choose 0x8000 (a maximum 16-bit integer), which creates a bit-vector with
LSB at the 31st position:

x = 0x8000; // bit pattern: 0b1000000000000000

x |= x >> 1; // bit pattern: 0b1100000000000000

x |= x >> 2; // bit pattern: 0b1111000000000000

x |= x >> 4; // bit pattern: 0b1111111100000000

x |= x >> 8; // bit pattern: 0b1111111111111111

For dummy-dummies, we can use 0x8001 to illustrate how the rightmost bits are preserved:

x = 0x8001; // bit pattern: 0b1000000000000001

x |= x >> 1; // bit pattern: 0b1100000000000001

x |= x >> 2; // bit pattern: 0b1111000000000001

x |= x >> 4; // bit pattern: 0b1111111100000001

x |= x >> 8; // bit pattern: 0b1111111111111111

Hence the folding goes strictly from right-to-left and does not change the position of the msb.
The ones32 function is a population count. Again, gcc users can use the built in __builtin_popcount.

The same page at aggregate.org also contains a SWAR algorithm for population count:

unsigned int ones32(register unsigned int x) {

/* 32-bit recursive reduction using SWAR...

but first step is mapping 2-bit values

into sum of 2 1-bit values in sneaky way

*/

x -= ((x >> 1) & 0x55555555); /* 8x (0101) bit pattern */

x = (((x >> 2) & 0x33333333) + (x & 0x33333333)); /* 8x (0011) bit pattern */

x = (((x >> 4) + x) & 0x0f0f0f0f);

x += (x >> 8);

x += (x >> 16);

return(x & 0x0000003f);

}

The above function may not seem obvious at first. Joerg Arndt provides a more comprehendable way for
population count in his book Matters Computational:

static inline ulong bit_count(ulong x) {

x = (0x5555555555555555UL & x) + (0x5555555555555555UL & (x>> 1)); // 0-2 in 2 bits

x = (0x3333333333333333UL & x) + (0x3333333333333333UL & (x>> 2)); // 0-4 in 4 bits

x = (0x0f0f0f0f0f0f0f0fUL & x) + (0x0f0f0f0f0f0f0f0fUL & (x>> 4)); // 0-8 in 8 bits
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x = (0x00ff00ff00ff00ffUL & x) + (0x00ff00ff00ff00ffUL & (x>> 8)); // 0-16 in 16 bits

x = (0x0000ffff0000ffffUL & x) + (0x0000ffff0000ffffUL & (x>>16)); // 0-32 in 32 bits

x = (0x00000000ffffffffUL & x) + (0x00000000ffffffffUL & (x>>32)); // 0-64 in 64 bits

return x;

}

Each bitmask are made so that adjacent bits are counted in a tree-like fashion. The right shifts make adjacent
bits countable. As he mentions,

The underlying idea is to do a search via bit masks.

It is worth mentioning that the bitmask technique is easily generalizable and is extremely useful to other
applications.

(There’s also a trivial way to get a population count; make a table of size MAX_INT and fill in the corre-
sponding numbers for indexes 0x0, 0x1, 0x3, 0x7, 0xf, 0xf1, 0xf3, 0xf7, 0xff... and so on, until 0xfffffffffffffffffffffffffffffff;
but this isn’t optimal because the table size is too large. This inspires the de Bruijn tables approach) In-
terestingly, the same webpage also provides a significantly simpler way of finding msb without using a
population count:

unsigned int msb32(register unsigned int x) {

x |= (x >> 1);

x |= (x >> 2);

x |= (x >> 4);

x |= (x >> 8);

x |= (x >> 16);

return(x & ~(x >> 1));

}

Alternatively, the divide-and-conquer 1bit mirroring scheme can be combined with a vectorized algorithm
or binary search discussed in sections 2 and 3 if the population count seems too obscure.

This section is To Be finalized.

5.1.2 The Stanford Graphics Bithack Algorithm

Sean Anderson maintained the wildly popular Stanford Graphics bithack page, which also contains various
ways to get msb or integer log2.

This section is To Be written.

5.2 Computing ilog2 through leading zeroes

Hacker’s Delight6, again, provides us with a million ways of getting the leading zeroes of n.
This section is To Be written.

6The chapter for computing leading zeroes: http://www.hackersdelight.org/hdcodetxt/nlz.c.txt
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6 gmplib Implmentation

gmplib’s implementation uses the approach of section 5.2, i.e. counting leading zeroes7. However it doesn’t
invent its own wheels, but uses gnulib’s count_leading_zeroes function8. The gnulib function, in turn,
checks for the gcc builtin (as in section 4), and uses it if available; if not, it resorts to counting 32 bits at a
time using the idea of section 3 (32bit is a cutoff), and resorts to the cutoff function count_leading_zeros_32
for dealing with 32bit numbers.

For sizes greater than 32 bits (code taken from their macro COUNT_LEADING_ZEROS(BUILTIN, MSC_BUILTIN, TYPE)):

do \

{ \

int count;

\

unsigned int leading_32; \

if (! x) \

return CHAR_BIT * sizeof x; \

for (count = 0; \

(leading_32 = ((x >> (sizeof (TYPE) * CHAR_BIT - 32)) \

& 0xffffffffU), \

count < CHAR_BIT * sizeof x - 32 && !leading_32); \

count += 32) \

x = x << 31 << 1; \

return count + count_leading_zeros_32 (leading_32); \

} \

while (0)

For 32bit numbers, gnulib simply uses the Stanford Graphics de Bruijn table bithack (which is probably the
fastest way) by Sean Anderson (as illustrated in section 5.1):

/* Compute and return the number of leading zeros in X, where 0 < X < 2**32. */

COUNT_LEADING_ZEROS_INLINE int count_leading_zeros_32 (unsigned int x) {

/* http://graphics.stanford.edu/~seander/bithacks.html */

static const char de_Bruijn_lookup[32] = {

31, 22, 30, 21, 18, 10, 29, 2, 20, 17, 15, 13, 9, 6, 28, 1,

23, 19, 11, 3, 16, 14, 7, 24, 12, 4, 8, 25, 5, 26, 27, 0

};

x |= x >> 1;

x |= x >> 2;

x |= x >> 4;

x |= x >> 8;

x |= x >> 16;

return de_Bruijn_lookup[((x * 0x07c4acddU) & 0xffffffffU) >> 27];
7https://fossies.org/dox/gmp-6.1.2/gmp-impl_8h.html#a4e73eff31639a8c6e6150c5a708694bd
8https://github.com/gagern/gnulib/blob/master/lib/count-leading-zeros.h
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}

So again, the gnulib implementation is pretty close to perfect (if not; 64bit CPUs now have 64bit built-in
population counts).

7 Conclusion

We have detailed some methods of computing the integer log2 function. The goal is to prevent further use
of

#include<math.h>

(int)log(x)/log(2);

(Just kidding :P).
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