
Greedy Algorithms and Greedy Problems
August 28, 2018

Several Fundamental Problems

Interval Scheduling

We have a set of requests numbered 1 ≤ i ≤ n, each starting at Si

and finishing at Fi; we want to schedule a non-overlapping number
the maximum number of them. Assuming that all requests are sorted
in some order, we proceed from left to right, looking at one request
at a time. The greedy strategy here is to accept a request that finishes
first, i.e., sorting by Fi for all i. For the O(n log n) implementation, we
implement as a while loop scanning the intervals from left to right,
recording an optimal L and R which stores the current interval to be
added to the set of scheduled intervals.

function schedule(A: set of intervals; F(*): Finish time; S(*): Beginning time):

sort(A) (: By finishing time :)

let OS, OF := new sets

let p := 0, pA := 0, lF := 0

while (pA < S.length) {

if (S(A[pA]) > lF) {

OS[p] := S(A[pA]

OF[p] := F(A[pA]

p += 1

} else pA += 1

}

The algorithm runs in time O(n log n + n). We proceed to prove its
correctness. Let O be the optimal set of intervals selected. Let S be
the set of solutions. We prove that |S| = |O| . Let i1i2...ik denote
the sequence in which requests are added to S. Let j1 j2...jm denote
the sequence in which requests are added to O. Note k = |S| and
m = |O|. It is trivial to first state that all intervals within S don’t
overlap, as for ir and ix, x ≥ r, S(ix) ≥ F(ir).

Lemma 1. For all r ≤ k, F(ir) ≤ F(jr).

Proof. Proceed by induction. For r = 1, since A is sorted by interval
ends, F(ir) is minimal for all 1 ≤ r ≤ |A| and selected by the algo-
rithm. For r > 1, by induction hypothesis, F(ir−1) ≤ F(jr−1). Since
F(jr−1) ≤ S(jr), F(ir−1) ≤ S(jr); this means that jr ∈ A for our algo-
rithm after r− 1. Since the greedy algorithm selects the interval with
the smallest finish time at the rth step, F(ir) ≤ F(jr).

greedy algorithms and greedy problems 2

Theorem 2. The algorithm schedule is optimal.

Proof. We prove by contradiction. Assume m ≥ k. Then, when r = k,
F(ir) ≤ F(jr), and since k ≤ m an extra request jk+1 ∈ O. Since
intervals do not overlap, F(jk) ≤ S(jk+1) and by Lemma 1, F(ik) ≤
S(jk+1) and hence jk+1 ∈ A at the termination of step k. Since the
condition of our algorithm requires visiting all elements in A, we
have a contradiction.

Scheduling to minimize lateness

We have a set of n jobs denoted by 2-tuples (ti, di), 1 ≤ i ≤ n. ti

is a nonnegative number that gives us the runtime of the task; di

specifies the deadline that the task must be finished. We introduce
two functions, s(i) that denotes the starting time of task i, and f (i)
that denotes the finishing time of task i. Note that by definition
f (i) = s(i) + ti. The problem asks us to minimize max{ f (i) − di}
for all i. The optimal strategy here is called Earliest Deadline First,
which schedules sorted by di, from earlist to furthest. An algorithm is
presented as follows:

function edf(N: num of tasks, s: start time,

T: set of runtimes, D: set of deadlines,

S: set of start times, F: set of ending times):

sort D and exchange members of T using order of D; ordered from smallest to largest

var f := s, maxD = -infinity

for(i = 0; i < N; i += 1) {

S[i] := f

F[i] := S[i] + T[i]

maxD := max(maxD, F[i] - D[i])

f := F[i]

}

return maxD

We proceed to prove the optimality of Earliest Deadline First. We
define idle time as follows:

Definition 3. Let the set of scheduled jobs S := {(s(i), f (i))|1 ≤ i ≤
N}.The set of idle times is I := {(f (i), s(i + 1))|1 ≤ i < N ∧ s(i + 1)−
f (i) ≥ 0}.

Observe that there exists an optimal solution whose solution set
S produces an empty set I; in other words, there exists an optimal
solution that leaves no idle time.

Lemma 4. There exists an optimal solution S that produces I = ∅.

greedy algorithms and greedy problems 3

Proof. (Sketch) Assume that there exists a set S′ with a nonempty
set of idle times I′ and s′(i), f ′(i) denoting the starting and finishing
time of the ith job in S′. Proceeding in the order from 1...N, For each
{(s′(i), f ′(i))|s′(i + 1) − f ′(i) > 0, 1 ≤ i < N} we modify s′(i +
1) := f ′(i) and f ′(i + 1) = s′(i) + ti. Then I′ = ∅ and since each
modification only moves s′(i) forwards, the newly modified f ′(i)
will always be less than or equal to the previous f ′(i) and hence
max1≤i≤N f (i) − di will also be less than or equal to the previous
one.

We introduce an extra definition that helps with the proof:

Definition 5. An inversion is a pair of jobs (i, j) with i < j and
dj > di.

Observe that by definition, our algorithm produces no inversions.
We proceed to prove the following lemma:

Lemma 6. There exists an optimal solution S with no idle times and no
inversions.

Proof. First, S with no idle times exists by lemma 4. We proceed
to prove that S can contain no inversions. Assume that S contains
some inversion (i, j). Then after swapping (i, j) S contains one less
inversion. By continuing this swapping process we may produce a set
S̄ with no inversions. Let an interval I = [s(i), f (j)]. Then by lemma
4 since we have no idle time, |I| = ∑i≤k≤j tk. Note that swapping i, j
does not affect |I|, as we only change s̄(j) = s(i), f̄ (j) = s(i) + tj

and s̄(i) = s(i) + tj + ∑i<k<j tk, f̄ (i) = s̄(i) + ti. Now let L =

max1≤k≤n f (k)− dk, and L̄ = max1≤k≤n f̄ (k)− dk. If L lies outside of
[i, j], we are done, since |I| is not changed by the swap. If L lies inside
[i, j] but is not j, we are also done; for if the maximum lateness occurs
at j, since i < j, the swap produces L̄ ≤ L; if the maximum lateness
occurs at (i, j)

greedy algorithms and greedy problems 4

Optimal Caching

Single-Source Shortest Path

Kruskal’s MST

Clustering

Huffman Codes

Min-Cost Arborescenes

Several Additional Problems

Point-Interval Problems

Example 7 (UVa11134 Fabled Rooks). By method of reduction we
reduce this problem to two 1-dimentional interval problems. Given n
intervals [i, j] ∈ I we want to assign a unique point to each interval
within [0, n]. An obvious strategy here is to sort the intervals and
start taking by left endpoint.

Consider a =[1,3], b =[1,4], c =[2,2]. Then we would assign
1 to a, 2 to b, and run out of points at c. However, sorting by left
endpoints don’t always work. Another more sophisticated strategy
might be sorting by area (right endpoint - left endpoint); this avoids
the pitfalls induced by sorting by left endpoint. However, this doesn’t
always work either. Consider a long interval [m, k]; without loss of
generality, let k − m ≥ 2; further, let [m, k − 1] be covered by k − m
intervals of length 1. Without loss of generality, let n− k ≥ 2; let an
additional interval of length 2 cover [k, k + 1]. Then if we sort by area
we would consider the k − m intervals of length 1 first (as they are
the smallest); since they are of length 1 there is only one assignment
for each. Then we consider the interval of length 2, and since k is not
taken yet we greedily take k, which makes [m, k] fully assigned and
fails this greedy strategy.

The only remaining greedy strategy that’s obvious is to sort by
right endpoints. We can immediately see that this works for the two
counterexamples above, and it actually works. The intuition is that
by ordering our right endpoints we always leave out the rightmost
spaces of the intervals consecutively; this is useful when dealing with
overlapping ones.

Code:

struct entry { unsigned first; unsigned second; unsigned id; };

inline static void void entrysort(vector<entry>& V) {

https://uva.onlinejudge.org/external/103/10340.pdf

greedy algorithms and greedy problems 5

sort(V.begin(), V.end(), [](const entry& a, const entry& b) {

return a.second < b.second; });

}

bool search(unsigned N, vector<entry>& V, unsigned* SV, unsigned *S) {

for(unsigned i = 0; i < V.size(); ++i) {

unsigned& vL = V[i].first;

unsigned& vR = V[i].second;

unsigned& id = V[i].id;

unsigned j;

for(j = vL; j <= vR; ++j) if (SV[j] == 0) { SV[j] = id; break; }

if (j > N || j > vR || SV[j] != id) return false;

S[id] = j;

}

return true;

}

int main() {

unsigned N;

while (cin>�>N) {

if (N==0) break;

vector<entry> X, Y;

unsigned SX[5001], SY[5001], SL[5001], SR[5001];

memset(SX, 0, 5001*sizeof(unsigned)); memset(SY, 0, 5001*sizeof(unsigned));

memset(SL, 0, 5001*sizeof(unsigned)); memset(SR, 0, 5001*sizeof(unsigned));

for(unsigned i = 0; i < N; ++i) {

entry xp, yp;

cin >�> xp.first >�> yp.first >�> xp.second >�> yp.second; // xl,yl,xr,yr

xp.id = yp.id = i+1;

X.push_back(xp); Y.push_back(yp);

}

entrysort(X); entrysort(Y);

if (!search(N, X, SX, SL) || !search(N,Y,SY,SR)) {

printf("IMPOSSIBLE \n");

goto impj;

}

for(unsigned i = 1; i <= N; ++i) {

// IDs are 1-indexed

cout <�< SL[i] <�< " " <�< SR[i] <�< endl;

} impj:; // impossible; skip

}

return 0;

greedy algorithms and greedy problems 6

}

Note 8. Sorting by right endpoint works for a series of interval prob-
lems.

Knapsack Problems

There are two types of knapsack problems: knapsack problems and
knapsack-like problems. The first type of knapsack problems are
traditional; the second type of problems only require us to stuff stuffs
into a knapsack.

Example 9 (UVa1149). We are to stuff stuffs into tubes that can stuff
two in a box, in order to reach some amount of value. This is also an
optimization problem. Code:

unsigned N; unsigned K; unsigned L; unsigned A[100001];

void solve() {

bool assigned = 0;

unsigned nAssigned = 0, l=0,r=K-1;

sort(A, A+K,[](const unsigned& a, const unsigned& b){return a<b;});

while (l<r) {

if (A[l] + A[r] <= L) {

// can fit two in a box

++nAssigned; --r,++l;

} else {

++nAssigned;

--r;

}

if (l==r) { ++nAssigned; }

printf("%d\n", nAssigned);

}

int main() {

cin >�> N;

for(unsigned i = 0; i < N; ++i) {

cin >�> K;

cin >�> L;

for(unsigned i = 0; i < K; ++i) {

cin >�> A[i];

}

solve();

if (i!=N-1) printf("\n");

greedy algorithms and greedy problems 7

}

return 0;

}

Stacking Problems

Techniques

Choosing the optimal subproblem

Subproblems in greedy algorithms can also be called finding the right
objective function. A great example is 7. Another series differently
flavored problems focus more heavily on choosing and writing out
a good objective function. These types of problems are usually op-
timization problems. The following is a contest example; note that
besides choosing the optimal strategy, the process of coding up such
a problem is also nontrivial; there are many more nuances (edge
cases) of the problem to consider.

Example 10 (Uva10440 Ferry Loading II). We are to schedule cars
that come during a day to ferry them across a river. We shall think
about the m + 1 case at first to reach the conclusion that we are to
ferry the remainder of cars at the first run in order to leave out maxi-
mal waiting time for the last car. Code:

int main() {

int c;

cin >�> c;

for(int i = 0; i < c; ++i) {

int t, m, n, C[1500], total_time = 0, total_rounds = 0;

cin >�> n >�> t >�> m;

for(int j = 0; j < m; ++j) cin >�> C[j];

if (m>n) {

int take = m % n;

if (take==0) {

take = n - 1;

total_time = C[take];

while (take < m) {

take += n;

total_time = max(C[take], total_time+2*t);

total_rounds++;

}

if (C[take-n] >= total_time - 2*t) total_time = C[m-1]+t;

else total_time -= t;

greedy algorithms and greedy problems 8

} else {

--take;

total_time = C[take];

while (take < m) {

total_time = max(C[take], total_time+2*t);

total_rounds++;

take += n;

}

if (C[take-n] >= total_time - 2*t) total_time = C[m-1] + t;

else total_time -= t;

}

} else {

total_rounds = 0;

total_time = C[n-1] + t;

}

cout <�< total_time <�< " " <�< total_rounds <�< endl;

}

return 0;

}

Left-Right Scan

Example 11 (Uva11054 Wine Trading in Gergovia). We are to give the
minimum cost for transporting wines alone an 1D segment. Envision
a wine tanker that goes unidirectionally from left to right that is also
able to take on negative costs. We simulate that tanker using a loop
and sweep from left to right. The minimum cost is independent of
the optimal strategy; hence the tanker gives the minimum cost. Code:

typedef long long ll;

int main() {

int N;

while (cin>�>N) {

if (N<2||N>100000) break;

ll transfer = 0, accum = 0, village = 0;

for(int i = 0; i < N; ++i) {

cin >�> village;

transfer += abs(accum);

accum += village;

}

cout <�< transfer <�< endl;

greedy algorithms and greedy problems 9

}

return 0;

}

Optimal Construction

Optimal construction is a method introduced in Rujia Liu’s book
[cite]. It is similar to brute-force, except (again), only explores the
branch that produces the optimal solutions. At each step, the optimal
construction method chooses to directly construct the solution. The
method is best taught by examples.

Example 12 (UVa10340 All in All). We would like to see if a string is
another string’s noncontiguous substring. We simply do a mergesort-
type scan through the two strings using two indices i, j, and see if
at each point, the contents of i, j matches each other. Note that the
size of strings is not provided in this problem; it is common for UVa
problems to not provide a clue for the problem size. Problems of this
type are usually small and indicate the solution is obvious. Code:

int main() { string s, t;

while (cin >�> s >�> t) {

if(s.size()==0&&t.size()==0) break;

unsigned i=0,j=0;

while(i<s.size()&&j<t.size()) {

if (t[j]==s[i]) ++i; ++j;

}

if (i==s.size()) printf("Yes\n");

else printf("No\n");

}

return 0;

}

Onto a more nuanced example. The following example may be
difficult to think up, or even difficult to code up. The trick lies
in constructing all solutions. As usual, when encountering the
construction-type problems recursion simplifies the structure a lot.
We may therefore attempt to use recursion to simplify the amount of
code and logic needed.

Example 13 (UVa 1610).

string out; unsigned outSize=0xffff; bool fin = 0;

void generate(string& x, string& L, string& R) {

https://uva.onlinejudge.org/external/103/10340.pdf

greedy algorithms and greedy problems 10

if (fin) return;

if (x.size() <= L.size() && x >= L && x < R && x.size() < outSize) {

cout <�< x <�< endl;

outSize = x.size();

fin=1;

return;

}

if (x.size() > L.size() || x >= R) return;

if (x < R) {

if (x[x.size()-1]<'Z') {

++x[x.size()-1];

generate(x,L,R);

--x[x.size()-1];

}

x += 'A';

generate(x,L,R);

x.pop_back();

}

}

int main() { unsigned d;

while (scanf("%u", &d)) {

vector<string> names;

if (d==0)return 0;

for(unsigned i = 0; i < d; ++i) {

string x; cin >�> x;

names.push_back(x);

}

sort(names.begin(), names.end(), [](const string& a, const string& b) {

unsigned i=0,j=0;

while (a[i]==b[j]) {

if(i==a.size()) return 1;

if(j==b.size()) return 0;

++i,++j;

}

return (int)(a[i]<b[j]);

}); // lexicographic sorting

string L = names[(names.size()-1)/2];

string R = names[(names.size()-1)/2+1];

string x="A";

generate(x,L,R);

fin=0; outSize=0xffff; out="";

greedy algorithms and greedy problems 11

}

return 0;

}

A yet more obscure example requires us to use hash tables. We can
fully take advantage of C++11’s unordered_map, which is a generic
hash table that is of reasonably good performance.

Example 14 (UVa1152 Sum of Four). We are to figure out the number
of a, b, c, d s (with a ∈ A, b ∈ B, c ∈ C, d ∈ D) that sum to zero. If
we attempt to do dynamic programming, we immediately find out
that there is only a pseudopolynomial-time algorithm available. We
resort to a clever use of hashing, hashing a+ b and −(c+ d) to reduce
an n4-time lookup to ~ n2-time. Again, the n2-time lookup is highly
dependant on the performance of the integer hashing function. For
our purposes the C++ STL hash function seems good enough. Code:

int *A, *B, *C, *D;

unsigned S=0;

int main() { int N, k;

cin >�> N;

for(int i = 0; i < N; ++i) {

S=0;

unordered_map<int, unsigned> M;

scanf("%d",&k);

A = new int[k];B = new int[k];C = new int[k];D = new int[k];

for(unsigned i = 0; i < k; ++i) {

cin >�> A[i];cin >�> B[i];cin >�> C[i];cin >�> D[i];

}

}

for(unsigned i = 0; i < k; ++i)

for(unsigned j = 0; j < k; ++j) {

if (M.find(A[i]+B[j]) != M.end()) {

M[A[i]+B[j]] += 1;

} else M[A[i]+B[j]] = 1;

}

for(unsigned i = 0; i < k; ++i)

for(unsigned j = 0; j < k; ++j) {

if (M.find(-(C[i]+D[j])) != M.end()) {

S += M[-(C[i]+D[j])];

}

greedy algorithms and greedy problems 12

}

cout <�< S <�< endl;

delete[] A; delete[] B; delete[] C; delete[] D;

if (i!=N-1) puts("");

return 0;

}

Where Does Greed Suffice?

Greedy algorithm has two properties it must satisfy: 1. Optimal sub-
structures (Recall dynamic programming) 2. A greedy property (that
the objective function is indeed optimal). We shall view greedy algo-
rithm as a special kind of dynamic programming; one which does
not explore all possibilities of the recursion tree, but only a branch
of all possibilities that does indeed contain all optimal solutions.
Hence, the recurrence for greedy algorithms runs in polynomial
time without memoization. By contrast, the recurrence for dynamic
programming must run in exponential time without memoization
because of the need to explore all solutions.

	Several Fundamental Problems
	Interval Scheduling
	Scheduling to minimize lateness
	Optimal Caching
	Single-Source Shortest Path
	Kruskal's MST
	Clustering
	Huffman Codes
	Min-Cost Arborescenes

	Several Additional Problems
	Point-Interval Problems
	Knapsack Problems
	Stacking Problems

	Techniques
	Choosing the optimal subproblem
	Left-Right Scan
	Optimal Construction

	Where Does Greed Suffice?

