Algorithms on Graphs

Study Notes by Ruijie Fang

1 DFS

Depth-first-search (DFS) generates a depth-first traversal of a graph G =
(V, E), an array P[] that records the previsit order of the vertices in V', and
an array O[] that records the postvisit order. It runs in O(V + E)-time.

Algorithm 1 (Depth-first search). DFS(G, u) :
VIS[u] :=1;

previsit(v);
for (u,v) € E:

if =V IS[v]: DFS(G,v);
postvisit(v);

The subroutines postvisit and previsit perform constant-time mainte-
nance work; as shown below, we can augment these procedures to perform
different tasks.

2 Finding connected components

We can call DFS in a loop through v € E to count the number of connected
components:

Algorithm 2 (Counting connected components in G). CountCC(G) :

t:=0;
VIS[0...|V]] :== 0;
for veV:

if ~VIS[]:
dfs(v); t :=t+1;

The overall time complexity is still O(|V| + | E|) since we only visit each
vertex once.

3 Bipartite testing

Theorem 3. G is bipartite <> G is bicolorable.

We can augment the DFS procedure for bipartite testing. We use an
extra array C[-] to denote the color of each vertex v € V. From theorem 3,
we denote Black as 1 and White as 0, and a bipartite graph must be correctly
colored using 0’s and 1’s.

Algorithm 4 (Bipartite testing). Precondition: Initialize C|-] to -1 and
set C[0] :== 0. Call isBipartite(G,0).

Postcondition: Returns 1 if the graph is bipartite; otherwise returns 0.
isBipartite(G,u) :

ne = =Cul;

for veV:
if =(Clv] = —1) A =(C[v] = nc): return 0;
elif Cv] = —1:
Clv] == ne;

return isBipartite(G,v);
The overall runtime is still O(|V| + |E|).

4 Articulation points

Definition 5 (Articulation points of a graph). An articulation point of G is
a vertex p € V such that the deletion of p from G increases the number of
connected components in G.

Lemma 6. The root of a DFS spanning tree of G is an articulation point if
and only if it has more than one children in the spanning tree.

2

Lemma 7. A node v in the DFS spanning tree of G is an articulation point
if and only if there exists no back edge from a tree descendant of v to a tree
parent of v.

Lemmas 6 & 7 results in a DFS-based linear-time algorithm for finding ar-
ticulation points. Let pre[-] denote the order in which DFS traverses the ver-
tices. Let low[u] = min{pre[v]|v is an ancestor of v in the DFS spanning tree}.
In other words, let low[u] denote the neighbor of u that is nearest to the
root of the DFS spanning tree. Then the set of articulation points are
{v € V0|low[v] > pre[v]} (the complement set contains all points whose
descendants have back edges) and, if the root node in the DFS spanning tree
has more than 1 children, the root node.

Algorithm 8 (Finding articulation points in a graph). Precondition: v stands
for the parent of u in the DFS spanning tree. Call with ArticulationPoint(G,0,—1).

p:=1; prel0...|V]] :==0;
ArticulationPoints(G,u,v) :

prefu] = p;
low[u] := prelul;
p:=p+1;
ch :=0; // children count
for (u,w) € E:
if —prefv]:
ch :=ch+1;
low[u] := min{low[u], df s(G,w, u)};
if low[w] > prefu):
report u as articulation point;
elif pre[w] < pre[u] ANw # v :
low(u] := min{low]u|, pre[w]};
if v<O0Ach=1:
report u as NOT an articulation point;

return low]ul;

5 Bridges

Definition 9 (Bridges/cut edges of a graph). A bridge of G is an edge
(u,v) € E such that the deletion of (u,v) from G increases the number of
connected components in G.

Continuing our discussion from section 4, we find that if low[v] > pre[ul,
then edge (u,v) is a bridge. It follows that this characterization suffices for
finding bridges, and we only have to modify ArticulationPoints(-) slightly
for this case.

Algorithm 10 (Finding bridges in a graph). Precondition: v stands for the
parent of u in the DFS spanning tree. Call with Bridges(G,0,—1).

p:=1; prel0..|V]] := 0;
Bridges(G,u,v) :

prefu] := p;
low|u] := prelul;
p=p+1
ch :=0; // children count
for (u,w) € E:
if —prefv]:
ch :=ch + 1;
low[u] := min{low[u], df s(G,w, u)};
if low[w] > pre[u]:
report (u,v) as bridge;
elif pre[w] < pre[ul Aw # v :
low[u] := min{low[u], pre[w]};

return lowul;

6 Biconnected components

We deal with undirected graphs in this section.

Definition 11. A graph G is biconnected if and only if for all u,v € V, there
exists at least two vertex-disjoint paths from u to v.

+ for all u,v € V, u and v are in a simple cycle (there exists no articu-
lation points).

Definition 12. A graph G is edge-biconnected if and only if for all u,v € V,
there exists at least two edge-disjoint paths from u to v.

< for all e € F| e is inside at least a single simple cycle (all edges are not
bridges).

Definition 13 (Biconnected component of a graph). A subgraph G’ C G is
called a biconnected component of G is a maximum biconnected subgraph of

G.

Definition 14 (Edge-biconnected component of a graph). Analogous to Def.
13, but the maximum subgraph is edge-biconnected.

By definition, we can find all edge-biconnected components by a graph by
finding and deleting all the bridges inside the graph. The resulting connected
components are all edge-biconnected.

By definition, each edge belongs to precisely one biconnected subgraph,
but a vertex might belong to two biconnected components.

Algorithm 15 (Finding a biconnected component). Preconditions: pre[l
0; isArticulationPoint[1...|V|] := 0; beenoll...|V|] == 0; bee[l...|V]] ==
{}; p:=1; beeCnt := 0

Initialize S := Stack();
FindBCC(u,p) : // p is the parent of u, initially -1.

low[u| := prelu] := p;

p=p+l
ch = 0;
for (u,v) € E:
if pref[v] = 0:
S.push(u,v);
ch :=ch+1;
df s(v,w);

V] =

low[u] := min{low[u], low[v]};
if low[v] > prelu]: // u is an articulation point
isArticulation Point[u] := 1,
beecCnt = becCnt + 1;
while —S.empty():
(o, v/) = S.top(); S.pop()
if (beenolu'] # becCnt):
add u' to beelbeecCnt);
beenolu'] := beeCnt;
if (bec[v'] # beeCnt):
add v’ to bee[beeCnitl;
beenofv'] := beeCnit;
if W =uAv =wv:
break;
elif pre[v] < prefu] Av # p:
S.push(u,v);
low[u] := min{low[u], pre[v]};

if p <0Ach>1) isArticulationPoint[u] := 1;

For finding edge-biconnected components, we can just remove all the
bridges and count the number of connected components.

7 Strongly connected components of directed
graphs

All vertices within the same SCC (Strongly Connected Component) of a di-
rected graph G can reach each other. However, due to the nature of the
directed graph, finding SCCs is not as simple as finding connected compo-
nents.

Tarjan’s Algorithm. Tarjan’s idea is still DFS-based, but it uses extra in-
formation to separate the different SCCs within the same DFS traver-
sal. The resulting algorithm has the same time bound as DFS. For a
single SCC C' C G, the first vertex encountered during the DFS traver-
sal is the ancestor of all other vertices in C' within the DFS spanning

6

tree. If we output C' immediately after we visited its first vertex, we can
separate different SCCs efficiently. The key to the problem, therefore,
is to record the first vertex in C' encountered during the DF'S traversal
of G. This makes this problem highly similar to finding articulation
points: if a vertex wu is the first vertex encountered, then there must
not be a back edge to u’s ancestor in the descendants of w.

Algorithm 16 (Tarjan’s SCC Algorithm). Preconditions: Initialize pre[l...|V|] :=
0, lowlink[1...|V|] := 0, sceno[l...|V|] := 0, p := 1, sceCnt = 0;

Initialize S := Stack();
TarjanSCC(u) :

prefu] := lowlink[u] := p;
p=p+L

S.push(u);

for (u,v) € E:

if pre[v] =0:
df s(v);
lowlink[u] := min{lowlink|[u], lowlink[v]};
elif scenolv] = 0:
lowlink[u] := min{lowlink[u], pre[v]};
if lowlink[u] = pre[u:
sccCnt = sceCnt + 1,
while —S.empty():

v = S.top(); S.pop();
scenolv] == sccCnt;
if v=u:

break;

8 2SAT

Some day.

