
Algorithms on Graphs

Study Notes by Ruijie Fang

1 DFS
Depth-first-search (DFS) generates a depth-first traversal of a graph G =
(V,E), an array P [·] that records the previsit order of the vertices in V , and
an array O[·] that records the postvisit order. It runs in O(V + E)-time.

Algorithm 1 (Depth-first search). DFS(G, u) :

V IS[u] := 1;

previsit(v);

for (u, v) ∈ E:

if ¬V IS[v]: DFS(G, v);

postvisit(v);

The subroutines postvisit and previsit perform constant-time mainte-
nance work; as shown below, we can augment these procedures to perform
different tasks.

2 Finding connected components
We can call DFS in a loop through v ∈ E to count the number of connected
components:

Algorithm 2 (Counting connected components in G). CountCC(G) :

t := 0;

V IS[0...|V |] := 0;

for v ∈ V :

1

if ¬V IS[v] :

dfs(v); t := t+ 1;

The overall time complexity is still O(|V |+ |E|) since we only visit each
vertex once.

3 Bipartite testing
Theorem 3. G is bipartite ↔ G is bicolorable.

We can augment the DFS procedure for bipartite testing. We use an
extra array C[·] to denote the color of each vertex v ∈ V . From theorem 3,
we denote Black as 1 and White as 0, and a bipartite graph must be correctly
colored using 0’s and 1’s.

Algorithm 4 (Bipartite testing). Precondition: Initialize C[·] to -1 and
set C[0] := 0. Call isBipartite(G, 0).

Postcondition: Returns 1 if the graph is bipartite; otherwise returns 0.

isBipartite(G, u) :

nc := ¬C[u];

for v ∈ V :
if ¬(C[v] = −1) ∧ ¬(C[v] = nc): return 0;
elif C[v] = −1:

C[v] := nc;

return isBipartite(G,v);

The overall runtime is still O(|V |+ |E|).

4 Articulation points
Definition 5 (Articulation points of a graph). An articulation point of G is
a vertex p ∈ V such that the deletion of p from G increases the number of
connected components in G.

Lemma 6. The root of a DFS spanning tree of G is an articulation point if
and only if it has more than one children in the spanning tree.

2

Lemma 7. A node v in the DFS spanning tree of G is an articulation point
if and only if there exists no back edge from a tree descendant of v to a tree
parent of v.

Lemmas 6 & 7 results in a DFS-based linear-time algorithm for finding ar-
ticulation points. Let pre[·] denote the order in which DFS traverses the ver-
tices. Let low[u] = min{pre[v]|v is an ancestor of u in the DFS spanning tree}.
In other words, let low[u] denote the neighbor of u that is nearest to the
root of the DFS spanning tree. Then the set of articulation points are
{v ∈ V |low[v] ≥ pre[v]} (the complement set contains all points whose
descendants have back edges) and, if the root node in the DFS spanning tree
has more than 1 children, the root node.

Algorithm 8 (Finding articulation points in a graph). Precondition: v stands
for the parent of u in the DFS spanning tree. Call with ArticulationPoint(G, 0,−1).

p := 1; pre[0...|V |] := 0;

ArticulationPoints(G, u, v) :

pre[u] := p;

low[u] := pre[u];

p := p+ 1;

ch := 0; // children count

for (u,w) ∈ E:

if ¬pre[v]:
ch := ch+ 1;

low[u] := min{low[u], dfs(G,w, u)};
if low[w] ≥ pre[u]:

report u as articulation point;
elif pre[w] < pre[u] ∧ w 6= v :

low[u] := min{low[u], pre[w]};
if v < 0 ∧ ch = 1:

report u as NOT an articulation point;

return low[u];

3

5 Bridges
Definition 9 (Bridges/cut edges of a graph). A bridge of G is an edge
(u, v) ∈ E such that the deletion of (u, v) from G increases the number of
connected components in G.

Continuing our discussion from section 4, we find that if low[v] > pre[u],
then edge (u, v) is a bridge. It follows that this characterization suffices for
finding bridges, and we only have to modify ArticulationPoints(·) slightly
for this case.

Algorithm 10 (Finding bridges in a graph). Precondition: v stands for the
parent of u in the DFS spanning tree. Call with Bridges(G, 0,−1).

p := 1; pre[0...|V |] := 0;

Bridges(G, u, v) :

pre[u] := p;

low[u] := pre[u];

p := p+ 1;

ch := 0; // children count

for (u,w) ∈ E:

if ¬pre[v]:
ch := ch+ 1;

low[u] := min{low[u], dfs(G,w, u)};
if low[w] > pre[u]:

report (u, v) as bridge;
elif pre[w] < pre[u] ∧ w 6= v :

low[u] := min{low[u], pre[w]};
return low[u];

6 Biconnected components
We deal with undirected graphs in this section.

4

Definition 11. A graph G is biconnected if and only if for all u, v ∈ V , there
exists at least two vertex-disjoint paths from u to v.
↔ for all u, v ∈ V , u and v are in a simple cycle (there exists no articu-

lation points).

Definition 12. A graph G is edge-biconnected if and only if for all u, v ∈ V ,
there exists at least two edge-disjoint paths from u to v.
↔ for all e ∈ E, e is inside at least a single simple cycle (all edges are not

bridges).

Definition 13 (Biconnected component of a graph). A subgraph G′ ⊆ G is
called a biconnected component of G is a maximum biconnected subgraph of
G.

Definition 14 (Edge-biconnected component of a graph). Analogous to Def.
13, but the maximum subgraph is edge-biconnected.

By definition, we can find all edge-biconnected components by a graph by
finding and deleting all the bridges inside the graph. The resulting connected
components are all edge-biconnected.

By definition, each edge belongs to precisely one biconnected subgraph,
but a vertex might belong to two biconnected components.

Algorithm 15 (Finding a biconnected component). Preconditions: pre[1...|V |] :=
0; isArticulationPoint[1...|V |] := 0; bccno[1...|V |] := 0; bcc[1...|V |] :=
{}; p := 1; bccCnt := 0;

Initialize S := Stack();

FindBCC(u, p) : // p is the parent of u, initially -1.

low[u] := pre[u] := p;

p := p+ 1;

ch := 0;

for (u, v) ∈ E:

if pre[v] = 0:
S.push(u, v);

ch := ch+ 1;

dfs(v, u);

5

low[u] := min{low[u], low[v]};
if low[v] ≥ pre[u]: // u is an articulation point

isArticulationPoint[u] := 1;

bccCnt := bccCnt+ 1;

while ¬S.empty():
(u′, v′) := S.top(); S.pop();

if (bccno[u′] 6= bccCnt):
add u′ to bcc[bccCnt];
bccno[u′] := bccCnt;

if (bcc[v′] 6= bccCnt):
add v′ to bcc[bccCnt];
bccno[v′] := bccCnt;

if u′ = u ∧ v′ = v:
break;

elif pre[v] < pre[u] ∧ v 6= p:
S.push(u, v);

low[u] := min{low[u], pre[v]};
if p < 0 ∧ ch > 1) isArticulationPoint[u] := 1;

For finding edge-biconnected components, we can just remove all the
bridges and count the number of connected components.

7 Strongly connected components of directed
graphs

All vertices within the same SCC (Strongly Connected Component) of a di-
rected graph G can reach each other. However, due to the nature of the
directed graph, finding SCCs is not as simple as finding connected compo-
nents.

Tarjan’s Algorithm. Tarjan’s idea is still DFS-based, but it uses extra in-
formation to separate the different SCCs within the same DFS traver-
sal. The resulting algorithm has the same time bound as DFS. For a
single SCC C ⊆ G, the first vertex encountered during the DFS traver-
sal is the ancestor of all other vertices in C within the DFS spanning

6

tree. If we output C immediately after we visited its first vertex, we can
separate different SCCs efficiently. The key to the problem, therefore,
is to record the first vertex in C encountered during the DFS traversal
of G. This makes this problem highly similar to finding articulation
points: if a vertex u is the first vertex encountered, then there must
not be a back edge to u’s ancestor in the descendants of u.

Algorithm 16 (Tarjan’s SCC Algorithm). Preconditions: Initialize pre[1...|V |] :=
0, lowlink[1...|V |] := 0, sccno[1...|V |] := 0, p := 1, sccCnt := 0;

Initialize S := Stack();

TarjanSCC(u) :

pre[u] := lowlink[u] := p;

p := p+ 1;

S.push(u);

for (u, v) ∈ E:

if pre[v] = 0:
dfs(v);

lowlink[u] := min{lowlink[u], lowlink[v]};
elif sccno[v] = 0:

lowlink[u] := min{lowlink[u], pre[v]};

if lowlink[u] = pre[u]:

sccCnt := sccCnt+ 1;

while ¬S.empty():
v := S.top(); S.pop();

sccno[v] := sccCnt;

if v = u:
break;

8 2SAT
Some day.

7

