
Range Minimum Query I

Study Notes by Ruijie Fang

1 Preliminaries
Problem 1 (Range Minimum Query (RMQ)). Given an array A of size n and
m queries Li and Ri, 1 ≤ i ≤ m, report the minimum element in A[Li...Ri] for
each query.

Problem 2 (Lowest Common Ancestors (LCA)). Given a rooted tree τ with
nodes labeled 1...n, find a shared common ancestor c of a and b that is farthest
from root (or, has the maximum depth).

Why are these problems important? RMQ was first proposed by J. L. Bently
in the 1980s. LCA was a classic problem in theoretical CS for a very long time,
and it was known to be quite difficult because there was no algorithm match-
ing its theoretical lower-bound (until Farach-Colton and Bender published a
famous paper which reduced LCA to ±1-RMQ in early 2000s). There are nu-
merous competitive programming problems that involve either online or offline
RMQ/LCA processing.

2 RMQ to LCA using the Cartesian tree
The Cartesian tree is a min-heap whose in-order traversal returns the original
array, A. A Cartesian tree can be constructed in O(n)-time using the all nearest
smallest values algorithm. For each index i, the left child is the smallest largest
value that that is to its left in the original array, and its right child will be added
later.

Algorithm 3 (Cartesian tree construction). Initialize P [1...n] to 0; // par-
ent array, P [i] is the parent of node i in the Cartesian tree

Initialize S := Stack(); // a stack of indices

For i := 1; i ≤ n; i+ = 1

l := 0;

While ¬S.empty() ∧A[S.top()] ≥ A[i]
l := S.top();S.pop();

If ¬S.empty()

1

P [i] := S.top();

If l > 0

P [l] := i;

S.push(i);

Since only n elements are pushed onto the stack, the algorithm runs in O(n).
We may find the root by iterating through P and finding the entry that has value
0 (the root has no parent).

Since small values are towards the top of the Cartesian tree, it is not hard
to see that the value of RMQ(L,R) on a cartesian tree is equal to finding the
LCA of L and R.

3 Offline RMQ using All Nearest Values
This interesting algorithm achieves near-linear-time in offline range minimum
query using the Union-Find structure. The Union-Find structure has an opera-
tion called findSet(i) which retrieves the parent of element i. We assume that
the findSet(·) operation on a Union-Find structure of size n takes α(n)-time,
the α(·) function being the inverse Ackermann function. This is called Arpa’s
Trick in the competitive programming community. The algorithm is as follows:

Algorithm 4. ArpaRangeMinimumQuery(B[·], A[·], P [·])

2

Precondition B[·] is a bucket for queries. Each query is a pair 〈L, idx〉. The
queries stored in B[i] has right endpoint R = i. idx specifies the index
which the answer to the query will be stored in. The parent array P [·]
stores the union-find structure; P [i] records the parent of i.

Postcondition A correctly computed A[·]. Entry i in A[i] stores the result of
query 〈L,R, i〉.

1. Initialize a stack S.

2. For i := 0 to n:

(a) While ¬S.empty() ∧A[S.top()] > A[i]:
i. P [S.top()] := i;

ii. S.pop();
(b) S.push(i);
(c) For Each 〈L, idx〉 in B[i]:

i. A[idx] := A[findSet(L)];

The correctness of the Algorithm 1 relies on the behaviour of the union-find
structure. At step i in the loop, the parent of each element j < i in the Union-
Find structure is set to the minimum element in range [j, i]. Therefore finding
the parent of L < i results in finding the minimum value in range [L, i]. Since
the outer loop is monotone, each index of A is only stored in S once and each
query in B[i], 1 ≤ i ≤ n is only processed once. This results in the O(α(n)n+m)
runtime.

The preprocessing phase involves filling the bucket B[·] with queries. This
is done in O(n+m)-time.

What’s interesting: This algorithm basically merged together Tarjan’s offline
Lowest Common Ancestors algorithm with the all-nearest-smaller-values algo-
rithm. Tarjan’s LCA algorithm works by operating a union-find set on top of a
DFS spanning tree, with the guarantee that LCA(u,v) can be answered once the
algorithm had already visited u and is processing v, and that the representative
of u and v will be their lowest common ancestor.

The preprocessing phase involves filling the bucket B[·] with queries. This
is done in O(n+m)-time.

Algorithm 5. PrecomputeBuckets(Q[·], B[·])

Precondition B[·] is a bucket for queries. Q[·] is an array of queries of form
〈L,R〉.

Postcondition Query i at Q[i] = 〈Li, Ri〉 will be stored in B[Ri] as 〈L, i〉.

1. Initialize B[·] to hold n buckets;

2. For Each 〈Li, Ri〉 in Q:
(a) B[Ri].add 〈Li, idx〉 ;

3

Step 1 takes O(n)-time, and step 2 takes O(m)-time. This concludes the
runtime of this algorithm as O(m+ n) preprocessing and O(α(n)m+ n).

The Union-Find structure isn’t completely necessary in the idea of the algo-
rithm, and combined with the stack, binary search may be used to result in an
〈O(m+ n), O(n logm)〉-time offline RMQ algorithm.

4 Sparse Table for 〈O(n log n), O(1)〉 Offline RMQ
Tarjan’s Sparse Table algorithm is a dynamic programming technique for solving
RMQ in O(n log n) preprocessing time and spends O(1) time for each query.
Tarjan’s idea is based on the following fact:

Fact 6. A sequence [i...i+2k−1] can be split into two sequences of length 2k−1:
[i...i+ 2k−1 − 1] and [i+ 2k−1...2k − 1].

Let T [i, j] denote the minimum value of A[i...i+ 2j]:

T [i, j] :=

{
min{T [i, j − 1], T [i+ 2j−1, j − 1]} j > 0

A[i] j = 0

Since the maximum j value is log2 n+ 1, the dynamic programming recurrence
works in O(n log n)-time. This results in the following preprocessing algorithm:

Algorithm 7. InitSparseTable(A[·], T [·], n)

Precondition A[·] is an array of n elements and T is a 2D table of size n ×
(log2(n) + 1.

Postcondition Constructs T [·] table, entry T [i, j] denotes the minimum value
in A[i...i+ 2j − 1].

1. For i := 0 to n− 1:

(a) T [i, 0] := A[i];

2. For j := 1; 2j ≤ n; j := j + 1 :

(a) For i := 0; i+ 2j − 1 < n; i := i+ 1 :

i. T [i, j] := min{T [i, j − 1], T [i+ 2j−1, j − 1]};

Having preprocessed the table, we can now answer queries. Recall that
each query takes the form of (L,R), R ≥ L. Let k := log2(R − L + 1). The
precomputation naturally leads us to the fact that [L,R] is covered by [L,L +
k] and [R − k,R]. Since we’re finding the minimum in the region, repeated
computation doesn’t matter.

Algorithm 8. QuerySparseTable(T [·], L, R):

Precondition Constructed T [·] sparse table with T [i, j] denoting the minimum
value in range [i...i+ 2j], query parameters R ≥ L.

4

Postcondition Returns the minimum value in range [L...R].

1. k := 0;

2. While 2k+1 ≤ R− L+ 1: k := k + 1;

3. Return min{T [L, k], T [R−2k+1, k]}; (Takes the minimum in ranges
[L...2k − 1] and [R− 2k + 1...R])

The while loop in step 2 takes O(log(n))-time. We can precompute the
logarithms in O(log(n)) to make this constant time:

Algorithm 9. CalculateLog2(log[·], n):

1. log[1] := 0;

2. For i := 2 to log2(n) + 1:

(a) log[i] := log[i/2] + 1;

This concludes our description for Tarjan’s Sparse Table algorithm.

5 Segment Trees
Segment trees support dynamic RMQ/RSQ operations with point and range
updates. A segment tree τ [·] recursively divides each interval into a left interval
and a right interval evenly. Smaller intervals are stored further down the tree
while the root of τ is the original interval [1...n]. Each node in τ is associated
with information that will help compute RSQ/RMQ problems.

We number the nodes in τ from top to bottom, left to right, starting from
0. The left child of a node i is 2i+ 1 and the right child is 2i+ 2.

Algorithm 10. SegTreeRMQ(τ , i, L, R, QL, QR)

Precondition τ is a segment tree with an array minv[·] storing RMQ infor-
mation. Node i stores interval [L, R]. The query is [QL, QR]. Call with
i := 0, L := 0, R := n.

Postcondition Returns the RMQ result of query (QL, QR).

1. M := L+ (R− L)/2; ans := +∞;

2. If L ≥ QL ∧R ≤ QR : Return τ.minv[i];

3. If QL ≤M : ans := min{ans, SegTreeRMQ(2i+ 1, L,M)};
4. If M < QR: ans := min{ans, SegTreeRMQ(2i+ 2,M + 1, R)};
5. Return ans;

The SegTreeRMQ procedure works in O(log n+ (R− L+ 1)).

Algorithm 11. UpdateSegTreeRMQ(τ , i, L, R, p, v)

5

Precondition τ is a segment tree. i is the current node index. [L,R] is the
current node interval, p the index and v the value of the update operation.

Postcondition UpdateSegTreeRMQ(·) updates τ in range [L...R] after replac-
ing element p’s value with v.

1. M := L+ (R− L)/2;
2. If L = R :

(a) minv[i] := v; Return;

3. Else:

(a) If p ≤M : UpdateSegTreeRMQ(τ , 2i+ 1, L, M , p, v);
(b) Else: UpdateSegTreeRMQ(τ , 2i+ 2, M + 1, R, p, v);
(c) τ.minv[i] := min{τ.minv[2i+1], τ.minv[2i+2}; (Update current

node)

The update procedure also works in O(log n). Given the update procedure,
we can build a segment tree of n nodes in O(n log n). We can, though, write a
special build procedure that builds the tree in O(n).

Algorithm 12. BuildSegTreeRMQ(τ , A, i, L, R)

Precondition Tree τ is an empty segment tree. A[L...R] is the target array; i
is the root index for A[L...R].

Postcondition BuildSegTreeRMQ(·) builds a segment tree for A[L...R].

1. M := L+ (R− L)/2;
2. If L = R:

(a) τ.minv[i] := A[L]; Return;

3. BuildSegTreeRMQ(τ , A, 2i+ 1, L, M);

4. BuildSegTreeRMQ(τ , A, 2i+ 2, M + 1, R);

5. τ.minv[i] := min{τ.minv[2i+ 1], τ.minv[2i+ 2]};

Since each index of A[1...n] is only visited once, we have T (n) = 2T (n/2) +
1 = O(n) as the resulting runtime of BuildSegTreeRMQ(·).

The description for segment trees above results in a 〈O(n), O(log n)〉-time
dynamic RMQ algorithm supporting node updates.

6

