
Improving Hot/Cold Splitting in LLVM

Ruijie Fang ruijief@princeton.edu

Joint work with Aditya Kumar (Facebook) and Rodrigo Rocha
(University of Edinburgh)

Agenda

Hot/Cold Splitting
Motivation

Improvement Ideas and Benchmark Results
Outline before inlining.

Outlining exception handling blocks.

Adding a cold section.

Cost model.

Concluding thoughts

Motivation

Organize code in a hot trace within a large function as closely together
as possible to improve icache locality.

More specifically, given profile / analysis info: group hot blocks together
and separate out the cold blocks.

Many different ways to do this ‑‑‑ Today's focus: Hot/cold splitting pass
in LLVM's mid‑end.

Example. Control‑flow graph of aio_poll function in qemu.

← The blocks shown in yellow are cold blocks! (not executed by
the specific trace we're analyzing). 609 lines of assembly
compiled by clang -O3 on a x86‑64 computer. Equivalently
nm --print-size tells us it occupies 2428 bytes (largest
function in the object file).

Example. Control‑flow graph of aio_poll function in qemu.

← After hot/cold splitting: Extract yellow‑colored blocks into 6
individual functions with cold attributes. The aio_poll function
is now 192 lines of assembly and 731 bytes.

Hot/cold splitting

An optimization pass for instruction cache locality and code size
in mid‑end

Takes in {profile info|static analysis info}, determine cold blocks
using cost model, extract cold regions using CodeExtractor

Contributed by Aditya Kumar in 2019

Significant improvements made by Vedant Kumar, Aditya Kumar,
and others

Hot/cold splitting

This talk: Ideas for improving HCS and results/insights obtained
from benchmarking these ideas on open‑source codebases.

Three codebases:
firefox

Z3 SMT solver+quantifier‑free linear arithmetic (QF_LIA) as
background theory

qemu

What ideas worked, what didn't work, and what workloads are[n't]
worth applying HCS to.

Why improvements?

Recall Example: Control‑flow graph of aio_poll function in
qemu.

← After hot/cold splitting: Extract yellow‑colored blocks into 6
individual functions with cold attributes. The aio_poll function
is now 192 lines of assembly and 731 bytes.

Caveat! Sum of size of aio_poll + extracted cold blocks is
2979 bytes (> 2428 bytes before optimization)

Improvement Ideas

Two considerations:

(More) code size reduction.

Performance: icache / branch miss rate, pagefaults

Improvement Ideas

1. Detect and determine cold blocks.
Rearranging order of optimization passes: calling HCS early
before every inliner pass, using HCS together w/ other passes

2. Splitting more cold blocks.
Splitting Itanium‑style EH blocks that are marked cold

3. Where to put the cold blocks.
Putting cold functions in a separate cold section.

Bottom line:

No code size blowup + perf improvement, or

Code size reduction + no perf regression.

Turns out...

Different ideas have different effect across different codebases.

Experimental Setup

Ubuntu 20.04LTS / Intel E5‑1607 v3 @3.1GHz / 32GB RAM / 32K
L1 cache, 256K L2 cache, 10240K L3 cache.

Frequency scaling disabled.

For firefox : With -Os or -O3 , workload uses talos-test perf-
reftests benchmark and uses PGO information from the same
benchmark.

For z3 : No PGO, compiled with -O3 , HCS uses only static analysis
info. Workload from SMTLIB2 benchmark suit's
QF_LIA/CAV2009/45vars .

Idea 1: Outline before inlining.

Schedule HCS early in the new PassManager's PGO optimization
pipeline, before the stock ModuleInliner pass.

Outline code every time before inliner is called.

More regions split, slight perf gain, but code size blowup.

Idea 2: Outlining exception handling
blocks.

C++ catch blocks are marked cold by default. However, can't
extract them without complications because EH handling isn't
regular control flow

Experimental: Before we start, words of caution
The method we use is destructive: Transforms EH regions
(while not guaranteeing splitting).

Not the best approach, but an approach; in general, quite
difficult to do in mid‑end.

Not an expert on EH, and full discussion of EH handling is
beyond scope.

EH Outlining

Itanium‑style EH handling in LLVM follows roughly the following
structure:

invoke-***
|
lpad-***
|
catch.dispatch
| |
catch |
| |
catch.fallthrough
|
resume

EH outlining difficulties

1. Cannot extract the block containing the invoke (otherwise hot
branch might be extracted)

2. Cannot extract the entire landing pad block, since the first
instruction after the unwind edge into the lpad block must be the
landingpad instruction.

3. Nothing above catch.dispatch maybe extracted:
catch.dispatch contains calls to eh.typeid.for intrinsic but
it is function‑specific. As such, CodeExtractor cannot extract these
calls.

EH outlining

Only opportunity left: Start extracting SESE region from
catch.dispatch .

Idea: Extract the calls to typeid.for intrinsic to a block further up in
the control flow graph, and since we have rather normal control flow, we
can do so safely and store the resultant values in some variable.

However, Since there might be nested catch blocks, we cannot simply
extract their calls to eh.typeid.for to an arbitrary block that
precedes them. (Otherwise we need to create phi nodes) Consider the
following example of nested throws...

An experimental solution

For every call instruction to eh.typeid.for in every
catch.dispatch block, move them to the highest post‑
landingpad block that dominates the current catch.dispatch
block.

Safe ‑‑‑ since the destination block we moved to is within the EH
region and dominates catch.dispatch

Also some (but not all) ability to extract nested catch blocks.

Evaluation

On Firefox, -Os , with PGO‑enabled:

Slight code‑size reduction while vanilla HCS already helps w/
performance

Idea 3: Adding a cold section.

Instead of putting extracted cold functions in the same binary section,
keep all cold functions in a different section. → More compact, smaller
section size for hot functions.

Left: Function size in aio-posix.c w/ HCS, right: without HCS

No significant performance gains on a qemu
workload...

Setup: qemu-x86_64-wholesystem , measure time spent booting
Ubuntu 16.04 image and running byte‑unixbench benchmarks: pipe,
spawn, context1, syscall, dhry2, each for 50,000 iterations.

(Insignificant!)

But on the Z3 workload...

Setup: Everything compiled with -O3 only. Compare vanilla Z3,
Z3+HCS, and Z3+HCS+cold section, on SMTLib2 QF_LIA/CAV2009
benchmark's 45‑variable SMT instances (which are randomly
generated conjunctions of LA(Z) inequalities).

(10 runs) ~1‑2% faster than vanilla HCS/no HCS, ~4% less branch
misses, ~9% less pagefaults, ~26% less icache misses

Idea 4: Tuning cost model

For each cold region, the cost model HCS uses calculates a benefit
score and a penalty score, and if their difference is positive, then it
tries to split it.

On firefox and qemu, we found basic blocks mostly come with
small benefit‑penalty differences, and decision around these small
blocks manifest in code size differences.

Idea 4: Tuning cost model

Idea 4: Tuning cost model

Idea 4: Tuning cost model

Calls for more fine‑grained cost analysis. Brought by Vedant
Kumar's patch (https://reviews.llvm.org/D59715, merged)

Even with D59715 applied, still might have code size issues
Z3: 26.585Mb with HCS (5276 cold funcs) vs. 25.765Mb
baseline

Less‑aggressive splitting might help in this case

https://reviews.llvm.org/D59715

Concluding thoughts

Findings

Not "plug‑n‑play": Not uniformly applicable across all applications,
and results vary for different workloads. (sub‑par results for
postgresql/qemu)

Performance‑wise, HCS effective on software with large code
sizes when everything can't fit neatly into icache (e.g. Firefox), or
on ad‑hoc workloads that have many branches and are cache‑
sensitive.

Even for workloads in which using HCS is beneficial, requires some
parameter tuning to get the best effect (e.g. tuning cost model / EH
outlining).

Concluding thoughts

"But only 24 hours a day..." So many opportunities, so little time.

"Data‑driven"‑approach: Use insights from benchmarking open‑
source codebases to drive improvements

Explore impact of different HCS parameters and tuning cost model
on different code bases

Using HCS with other passes, and impact of optimization ordering
when scheduling HCS with other passes: inliner, MergeFunctions,
machine function splitter

Challenges

1. Working with large open‑source codebases: Involved compilation
process in many applications (e.g. qemu, z3prover) not friendly to
LLVM profiling by default.

2. Finding representative benchmarks that model real‑world
workloads (e.g. benchmarking Firefox vs. real‑life web browsing).

3. Obtaining granular, explainable insights into how HCS affects the
size/performance of final binary (e.g. looking at function call
traces). ← Often ad‑hoc, time‑consuming, laborious process.

Thank you & Feedback

Acknowledgements: This project was supported by a Google Summer
of Code 2020 stipend. Thanks to Aditya Kumar, Rodrigo Rocha for
mentoring me during GSoC 2020, and many other LLVM contributors
for valuable feedback during patch reviews.

Slides at: tr5.org/~ruijie/hcs.pdf
More info: https://tr5.org/~ruijie/gsoc20_hcs/index.xhtml

https://tr5.org/~ruijie/hcs.pdf
https://tr5.org/~ruijie/gsoc20_hcs/index.xhtml

