Improving Hot/Cold Splitting in LLVM

Ruijie Fang ruijief@princeton.edu

Joint work with Aditya Kumar (Facebook) and Rodrigo Rocha
(University of Edinburgh)

Agenda

e Hot/Cold Splitting
o Motivation

e Improvement [deas and Benchmark Results
o Qutline before inlining.

o Qutlining exception handling blocks.
o Adding a cold section.
o Cost model.

e Concluding thoughts

Motivation

Organize code in a hot trace within a large function as closely together
as possible to improve icache locality.

More specifically, given profile / analysis info: group hot blocks together
and separate out the cold blocks.

Many different ways to do this --- Today's focus: Hot/cold splitting pass
in LLVM's mid-end.

Example. Control-flow graph of aio_poll functionin gemu.

<— The blocks shown in yellow are cold blocks! (not executed by

the specific trace we're analyzing). 609 lines of assembly

compiled by clang -03 on ax86-64 computer. Equivalently
nm ——print-size tells us it occupies 2428 bytes (largest

1 0000000000004112 6000000000000005 T aio_context_use_g_source
° ° ° ° 0000000000000000 0000000000000012 T aio_poll_disabled

0000000000000165 0000000000000015 r .L.str.4

u I I J I . 0000000000000032 0000000000000017 r .L.str.1
0000000000004080 0000000000000018 T aio_context_destroy
0000000000000278 0000000000000022 r .L.Str.6
0000000000000085 0000000000000023 r .L.str.2
0000000000000368 0000000000000025 r .L.str.8
0000000000000434 0000000000000027 r .L_ PRETTY_FUNCTION_.rcu_read_unlock
0000000000004048 0000000000000029 T aio_context_setup
0000000000000000 0000000000000032 I .L.str
0000000000000049 0000000000000036 r .L_PRETTY_FUNCTION__.aio_poll
0000000000004128 0000000000000037 T aio_context_set_poll_params
0000000000000238 0000000000000040 r .L.str.5
0000000000000393 0000000000000041 r .L.str.9
0000000000000800 0000000000000045 T aio_set_fd_poll
0000000000000461 0000000000000047 r .L.str.10
0000000000000628 0000000000000047 r .L.str.13
0000000000000579 0000000000000049 r .L.str.12
0000000000000108 0000000000000057 r .L.str.3
0000000000000180 0000000000000058 r .L_PRETTY_FUNCTION_.run_poll_handlers
0000000000000928 0000000000000066 T aio_set_event_notifier_poll
0000000000000300 0000000000000068 r .L.str.7
0000000000000508 0000000000000071 r .L.str.11
0000000000000016 0000000000000074 T aio_add_ready_handler
0000000000000848 0000000000000074 T aio_set_event_notifier
0000000000001264 0000000000000104 T aio_dispatch
0000000000001008 0000000000000106 T aio_prepare
0000000000001120 0000000000000139 T aio_pending
0000000000001376 0000000000000238 t aio_free_deleted_handlers
0000000000004176_0000000000000437 t aio_dispatch_handler

000000000096 0000000000000698 T aio_se! ler
0080008000801616 8000000000002428 T aio_poll

Example. Control-flow graph of aio_poll functionin gemu.

UL

<— After hot/cold splitting: Extract yellow-colored blocks into 6
individual functions with cold attributes. The aio_poll function
is now 192 lines of assembly and 731 bytes.

I 0000000000001760 0000000000000130 t aio_poll.cold.4 I

0000000000000208 0000000000000159 T aio_dispatch
0000000000000032 0000000000000164 T aio_pending
39 0000000000001072 000P00VP0VARR194 t aio_poll.cold.l

0000000000000816 0000000000000201 t aio_dispatch.cold.l
0000000000003344 0000000000000211 t aio_context_use_g_source.cold.1l
0000000000000128 0000000000000230 T aio_context_destroy
0000000000000448 0000000000000237 t aio_set_fd_handler.cold.1

L 0000000000000368 PVPPVVORVVVBR325 t aio_dispatch _handler
0000000000001392 PPPPVAVRAPAGA355 t aio_poll.cold.3
0000000000000112 P000000000A00594 T aio_set fd _handler

™ 0000000000000800 00P000AVOA0A0731 T aio_poll
ff 0000000000001904 POPOAVAVOROA1367 t aio_poll.cold.5
%‘Z

Hot/cold splitting

e An optimization pass for instruction cache locality and code size
in mid-end

e Takes in {profile info|static analysis info}, determine cold blocks
using cost model, extract cold regions using CodeExtractor

e Contributed by Aditya Kumar in 2019

e Significant improvements made by Vedant Kumar, Aditya Kumar,
and others

Hot/cold splitting

e This talk: Ideas for improving HCS and results/insights obtained
from benchmarking these ideas on open-source codebases.

e Three codebases:
o firefox

o Z3 SMT solver+quantifier-free linear arithmetic (QF_LIA) as
background theory

o gemu

o \What ideas worked, what didn't work, and what workloads are[n't]
worth applying HCS to.

Why improvements?

CLULUA™

Recall Example: Control-flow graph of aio_poll functionin
gemu.

<— After hot/cold splitting: Extract yellow-colored blocks into 6
individual functions with cold attributes. The aio_poll function
is now 192 lines of assembly and 731 bytes.

Caveat! Sum of size of aio_poll + extracted cold blocks is
2979 bytes (> 2428 bytes before optimization)

Improvement ldeas

Two considerations:

e (More) code size reduction.

e Performance: icache / branch miss rate, pagefaults

Improvement ldeas

1. Detect and determine cold blocks.
o Rearranging order of optimization passes: calling HCS early
before every inliner pass, using HCS together w/ other passes

2. Splitting more cold blocks.
o Splitting Itanium-style EH blocks that are marked cold

3. Where to put the cold blocks.
o Putting cold functions in a separate cold section.

Bottom line:

e No code size blowup + perf improvement, or

e Code size reduction + no perf regression.
Turns out...

Different ideas have different effect across different codebases.

Experimental Setup

e Ubuntu 20.04LTS/ Intel E5-1607 v3 @3.1GHz / 32GB RAM / 32K
L1 cache, 256K L2 cache, 10240K L3 cache.

e Frequency scaling disabled.

For firefox : With -0s or -03 , workload uses talos-test perf-
reftests benchmark and uses PGO information from the same
benchmark.

For z3 :No PGO, compiled with -03 , HCS uses only static analysis
info. Workload from SMTLIB2 benchmark suit's
QF LIA/CAV2009/45vars .

Idea 1: Outline before inlining.

e Schedule HCS early in the new PassManager's PGO optimization
pipeline, before the stock Modulelnliner pass.

e Qutline code every time before inliner is called.

e More regions split, slight perf gain, but code size blowup.

firefox, talos-test perf-reftest (-O2 6 runs, performance).

Time (mean) | Time (median) | Regions Detected | Regions Split

-0O2 Baseline 1015.8s 1015.0s
-0O2 PGO+Vanilla HCS [961 .3s 961 .0s 152048 69444
-02 PGO+Inliner HCS |959 .444s 959 0s 157166 74166

-02 D59715 964 .447s 953.472s

Idea 2: Outlining exception handling
blocks.

e C++ catch blocks are marked cold by default. However, can't
extract them without complications because EH handling isn't
regular control flow

o Experimental: Before we start, words of caution
o The method we use is destructive: Transforms EH regions
(while not guaranteeing splitting).

o Not the best approach, but an approach; in general, quite
difficult to do in mid-end.

o Not an expert on EH, and full discussion of EH handling is
beyond scope.

EH Outlining

ltanium-style EH handling in LLVM follows roughly the following
structure:

1nvoke—kxxk
Lpad—xkx

catch.dispatch
|

catch |

|
catch.fallthrough

resume

EH outlining difficulties

1. Cannot extract the block containing the invoke (otherwise hot
branch might be extracted)

2. Cannot extract the entire landing pad block, since the first
instruction after the unwind edge into the Ipad block must be the
landingpad instruction.

3. Nothing above catch.dispatch maybe extracted:
catch.dispatch contains callsto eh.typeid. for intrinsic but
it is function-specific. As such, CodeExtractor cannot extract these
calls.

EH outlining

Only opportunity left: Start extracting SESE region from
catch.dispatch .

|dea: Extract the callsto typeid. for intrinsic to a block further up in

the control flow graph, and since we have rather normal control flow, we

can do so safely and store the resultant values in some variable.

However, Since there might be nested catch blocks, we cannot simply
extract their callsto eh.typeid.for toan arbitrary block that
precedes them. (Otherwise we need to create phi nodes) Consider the
following example of nested throws...

lpad:

%2 = landingpad { i8%, i32 }

catch i8* bitcast (i8** @_ZTIi to i8%*)

%3 = extractvalue { i8% i32 } %2, 0

store i8* %3, i8** %exn.slot, align 8

%4 = extractvalue { i8%, i32 } %2, 1

store 132 %4, i32* %ehselector.slot, align 4
br label %catch.dispatch

N

catch.dispatch:

%sel = load i32, i32* %ehselector.slot, align 4

%5 = call 132 @Illvm.eh.typeid.for(i8* bitcast (i8** @_ZTIi to i8%)) #3
Y%matches = icmp eq i32 %sel, %5

br il %matches, label %catch, label %catch.dispatch3

T [F

'

catch:

... i8* null) #4

%exn = load 8%, i8** %exn.slot, align 8

%6 = call i8* @_ cxa_begin_ catch(ls* %exn) #3

%7 = bitcast i8* %6 to i32*

%8 = load 132, i32* %7, align 4

store i32 %8, i32* %e, align 4

store i32 4, 132* %)j, align 4

%exceptionl = call i8* @_ cxa_allocate exception(i64 4) #3
%9 = bitcast i8* %exceptionl to i32*

%10 = load i32, 132* %)j, align 4

store i32 %10, i32* %9, align 16

invoke void @__cxa_throw(i8* %exceptionl, i8* bitcast (i8* @_ZTIi to i8*),

to label %unreachable unwind label %lpad2

catch.dispatch:

Yseld = load 132 i32* %ehselectorslot, align

%14 = call i32 @]lvm eh.typeid.for(i8* bltcast (18** @_ZTIi to i8%)) #3
%matches5 = icmp eq i32 %sel4, %14

bril %matches5, label %catch6, label %eh.resume

unreachable

%17 = load i32, i32* %16, align 4
store i32 %17, i32* %f, align 4

call void @exit(i32 %18) #5

g T | F
catch6:
%exn7 = load i8%*, i8** %exn.slot, align 8 Elnmearrmcs
%g = call i8* el Mg%li :atch(la* Yoexn7) #3 %exn9 = load 8%, i8** %exn.slot, align 8
= bitcast i to i %sell0 = load 132, i32* %ehselector.slot, align 4

%lpad.val = insertvalue {i8%,i32 } lmdef 18* %exn9, 0
_ B B A %Ilpad.valll = insertvalue { i8%*, i32 } %lpad.val, i32 %sell0, 1
%18 = load 132, 132* %f, align 4 resume { i8*, 132 } %lpad.valll

CFG for 'main' function

An experimental solution

e Forevery call instructionto eh.typeid.for inevery
catch.dispatch block, move them to the highest post-
landingpad block that dominates the current catch.dispatch
block.

e Safe --- since the destination block we moved to is within the EH
region and dominates catch.dispatch

o Also some (but not all) ability to extract nested catch blocks.

Evaluation

On Firefox, —0s , with PGO-enabled:

Opt Level | Size (incl. dynamic libraries)
delta=0 HCS -Os 2.188262032 GB
EH outlining HCS |-Os 2.187481424GB

Time (mean) | Time (median)
-0O2 Baseline 1015.8s 1015.0s
-02 PGO+Vanilla HCS (961 .3s 961 .0s

o Slight code-size reduction while vanilla HCS already helps w/
performance

Idea 3: Adding a cold section.

Instead of putting extracted cold functions in the same binary section,
keep all cold functions in a different section. — More compact, smaller
section size for hot functions.

1400 T T T T T T T T3] 200 T T T T e
1200 -
2000 R
1000 —
g
S 800 | - 1500 - 7
a +
=
o 600 - P
-% 1000 - B
400 |- P N
200 |- 4t 1 ®sor o
an]‘*' +
ot fElatE t ;
0 bbb e 0 Lt b bbb b b bbbt prrpret
0 5 10 15 20 25 30 35 40 45 50 o 5 10 15 20 25 30 35

Left: Function sizein aio-posix.c w/HCS, right: without HCS

No significant performance gains ona gemu
workload...

Setup: gemu-x86_64-wholesystem , measure time spent booting
Ubuntu 16.04 image and running byte-unixbench benchmarks: pipe,
spawn, context1, syscall, dhry2, each for 50,000 iterations.

Time (mean across 6 runs) |icache miss rate | branch miss rate
-O2 Vanilla HCS 38.3379s (stddev: +.13%) |1.952% 1.692%
-02 HCS+Cold Sections | 38 43395 (stddev: +.18%) |1.936% 3.118%
-02 PGO baseline 38.66s (stddev: +.12%) 1.912% 3.150%

(Insignificant!)

But on the Z3 workload...

Setup: Everything compiled with —03 only. Compare vanilla Z3,
/Z3+HCS, and Z3+HCS+cold section, on SMTLib2 QF LIA/CAV2009
benchmark's 45-variable SMT instances (which are randomly
generated conjunctions of L.A(7Z) inequalities).

Mean time (s) | Branch misse rate icache misses Pagetaults
Vanilla Z3 21.840+0.223 1.53% 18260045+0.19% | 92494+4.63%
23+ HCS 21.974+0.157 1.55% 22645047+0.40% | 98606+4, 74%
7Z3+HCS+ColdSec | 21.590+0.132 1.49% 16709557+0.20% | 90075+4.15%

(10 runs) ~1-2% faster than vanilla HCS/no HCS, ~4% less branch
misses, ~9% less pagefaults, ~26% less icache misses

Idea 4: Tuning cost model

e For each cold region, the cost model HCS uses calculates a benefit
score and a penalty score, and if their difference is positive, then it
tries to split it.

e On firefox and gemu, we found basic blocks mostly come with

small benefit-penalty differences, and decision around these small
blocks manifest in code size differences.

Idea 4: Tuning cost model

delta = OutliningBenefit - OutliningPenalty

1024 | | | | | | l
512 f b
sl b
128 |- e
xS A S S S
S B2 -
D
S g F] b -
o 7 N -
O I i | 1 S -
2 i o S S
1 l L Iy | | L

-100 0 100 200 300 400 500 600 700 800 900
Delta

Idea 4: Tuning cost model

Opt Level [Size (incl. dynamic libraries)
D59715 -Os 2.184796592 GB
delta=5 HCS |-Os 2.206931464 GB
delta=-2 HCS |-O3 2.270277648 GB
delta=0 HCS [-O3 2.2477788640 GB
D59715 -03 2.243288440 GB
delta=2 HCS |-O3 2.259242024 GB
delta=5 HCS [-O3 2.270277648 GB
baseline -03 2.299546240 GB

Idea 4: Tuning cost model

e Calls for more fine-grained cost analysis. Brought by Vedant
Kumar's patch (https://reviews.llvm.org/D59715, merged)

o Even with D59715 applied, still might have code size issues
o /Z3:26.585Mb with HCS (5276 cold funcs) vs. 25.765Mb
baseline

o Less-aggressive splitting might help in this case

https://reviews.llvm.org/D59715

Concluding thoughts

Findings

e Not "plug-n-play": Not uniformly applicable across all applications,
and results vary for different workloads. (sub-par results for
postgresqgl/gemu)

e Performance-wise, HCS effective on software with large code
sizes when everything can't fit neatly into icache (e.g. Firefox), or
on ad-hoc workloads that have many branches and are cache-
sensitive.

e Even for workloads in which using HCS is beneficial, requires some
parameter tuning to get the best effect (e.g. tuning cost model / EH
outlining).

Concluding thoughts

"But only 24 hours a day..." So many opportunities, so little time.

"Data-driven"-approach: Use insights from benchmarking open-
source codebases to drive improvements

Explore impact of different HCS parameters and tuning cost model
on different code bases

Using HCS with other passes, and impact of optimization ordering
when scheduling HCS with other passes: inliner, MergeFunctions,
machine function splitter

Challenges

1. Working with large open-source codebases: Involved compilation

process in many applications (e.g. gemu, z3prover) not friendly to
LLVM profiling by default.

2. Finding representative benchmarks that model real-world
workloads (e.g. benchmarking Firefox vs. real-life web browsing).

3. Obtaining granular, explainable insights into how HCS affects the
size/performance of final binary (e.g. looking at function call
traces). <— Often ad-hoc, time-consuming, laborious process.

Thank you & Feedback

Acknowledgements: This project was supported by a Google Summer
of Code 2020 stipend. Thanks to Aditya Kumar, Rodrigo Rocha for
mentoring me during GSoC 2020, and many other LLVM contributors
for valuable feedback during patch reviews.

Slides at: tr5.org/~ruijie/hcs.pdf
More info: https://tr5.org/~ruijie/gsoc20_hcs/index.xhtml

https://tr5.org/~ruijie/hcs.pdf
https://tr5.org/~ruijie/gsoc20_hcs/index.xhtml

